
GFS 13: Quaternary sediments – coastal dunes

1. GFS definition

Geology constraint: Slope constraint:	Qrd None
Area constraint:	None
Rationale for choice of GFS:	Coastal dune systems are likely to discharge directly to the sea via local flow systems and, therefore, are distinguished from other Quaternary deposits
GFS priority:	Low

2. The salinity problem

Salinity occurrence: Low lying coastal areas (generally affected by primary salinity) (Source: DNRE (2000) and WGCMA (2005))

Assets being affected: Agricultural land, parks/reserves, wetlands (Source: DNRE (2000) and WGCMA (2005))

Area of mapped land salinity: 144ha Class 1, 833ha Class 2, 853ha Class 3, 201ha undifferentiated (Source: West Gippsland Land Salinity GIS layer, DNRE (2000) and WGCMA (2005))

GFS 13: Quaternary sediments – coastal dunes

Area of primary and secondary land salinity: 254ha primary salinity, 1767ha secondary salinity, 9ha unknown (Source: West Gippsland Land Salinity GIS layer, DNRE (2000) and WGCMA (2005))

Area of wetland salinity: Key wetland affected by salinity (primary): Lake Reeve

Surface water salinity: No significant surface water salinity

Salinity process: Primary salinity resulting from ocean influxes (Source: DNRE (2000) and WGCMA (2005))

Current area of less than 2m depth to water table: 3104ha <2m, 1652ha coastal plain (<2m AHD) = total 4756ha (Source: West Gippsland DTWT GIS layer and WGCMA (2005))

Groundwater salinity: Variable (500 to 3,000mg/L TDS). (Source: Warragul/Sale hydrogeological map (1995))

Land salinity trend: Unknown

Groundwater level trend: Stable.

3. Landscape attributes

Area: Coastal dunes

Geology: Quaternary coastal dune deposits

Topography: Slightly undulating dunes

Soil permeability: Predominantly very high with areas of moderate, very very low and high permeability. (Source: West Gippsland Soil Permeability GIS layer)

Annual Rainfall: 800-1000mm in South Gippsland coastal areas, 600-700mm in Gippsland Lakes area. (Source: West Gippsland Annual Rainfall GIS layer)

Annual Evaporation: 925 to >1000mm. (Source: West Gippsland Annual Evaporation GIS layer)

Landuse: Predominantly native vegetation and dryland beef production with limited dairy. (Source: West Gippsland Landuse GIS layer)

4. Hydrogeology

Geology: Sands, gravels, clays

Aquifer type: Unconsolidated sediments

Hydraulic conductivity: Unknown (5-10m/day?)

Aquifer transmissivity: Moderate-high (Source: GFS workshop)

Aquifer storage coefficient: 0.05-0.1 (Source: GFS workshop)

Hydraulic gradient: Highly variable. Huge range. 0.001 to 0.01 (Source: GFS workshop)

Yield Variable but generally pretty low (<0.5-5L/sec) (Source: Warragul/Sale hydrogeological map (1995))

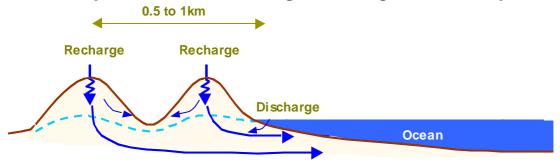
Temporal recharge distribution: Spring (Source: GFS workshop)

Spatial recharge distribution: Uniform (Source: GFS workshop)

Recharge estimate: 10-20% of rainfall (Source: GFS workshop)

Aquifer uses: Stock and domestic

Scale of groundwater flow path: Local


GFS 13: Quaternary sediments – coastal dunes

Responsiveness to land management: Salinity generally primary from ocean influx but secondary salinity would respond quickly. (Source: GFS workshop)

National GFS type most like: None (Source: GFS workshop)

Groundwater flow between GFSs: Likely to receive flow from GFSs 10 and 11.

5. Conceptual model of recharge discharge relationship

6. Salinity Management Options

Current salinity management: Seawalls, salt tolerant pasture, gated structures in wetlands. (Source: DNRE (2000) and WGCMA (2005))

Recharge control options: Perennial pasture, enhancement of native vegetation.

(Source: DNRE (2000), WGCMA (2005) and GFS workshop)

Pasture or crop potential	Trees for biodiversity potential	Trees for forestry potential	Surface drainage potential	Irrigation management potential
Moderate	Strong	None	Weak	None

Groundwater discharge enhancement options: Groundwater pumping really not viable in these areas due to low gross margins and proximity to coast (and the risk of salt water intrusion) (Source: DNRE (2000) and WGCMA (2005))

Public groundwater control pumping	Private groundwater pumping potential	Tile and mole drain potential	Break of slope tree planting
None	Weak	None	Weak

Living with salt options: Salt tolerant pasture, crops and trees (Melaleuca, Leptospermum). (Source: DNRE (2000), WGCMA (2005) and GFS workshop)

Conflicts with other NRM programs: Potential conflict with weed and wetland program if salt tolerant crops and pastures infest areas outside intended saline areas (eg wetland reserves). (Source: WGCMA (2005) and GFS workshop)

Synergies with other NRM programs: Synergy with the biodiversity program.

(Source: WGCMA (2005) and GFS workshop)