
GFS 6: Tertiary sediments - high slope (Latrobe Gp recharge areas)

1. GFS definition

Geology constraint:	All Tertiary sediments except Tvo and Tml		
Slope Constraint:	>5 degrees		
Area constraint:	None		
Rationale for choice of GES:	GES defines the recharge area for the deeper Latr		

Rationale for choice of GFS: GFS defines the recharge area for the deeper Latrobe Group Aquifer. Although the Latrobe Group Aquifer is not likely to be connected to the water table, there is a potential conflict between the management options for this area from a salinity perspective (ie reduce recharge) and a groundwater management perspective (ie maintain or increase recharge).

GFS priority:

Low

2. The salinity problem

Salinity occurrence: None (Source: West Gippsland Land Salinity GIS layer)

Assets being affected: None (Rural Salinity: DNRE (2000) and WGCMA (2005) Urban salinity: SKM (2005 in prep))

Area of mapped land salinity: None (Source: West Gippsland Land Salinity GIS layer)

Area of primary and secondary land salinity: None (Source: West Gippsland Land Salinity GIS layer)

GFS 6: Tertiary sediments - high slope (Latrobe Gp recharge areas)

Area of wetland salinity: No known areas of wetland salinity

Surface water salinity: Monitoring surface water courses generally meet SEPP limits for salinity

Salinity process: NA

Current area of less than 2m depth to water table: 12ha <2m (West Gippsland DTWT GIS layer)

Groundwater salinity: Unknown - potentially variable

Land salinity trend: NA

Groundwater level trend: No data – suspected to be the same as for Latrobe Aquifer (ie a decline of approximately one metre per year

3. Landscape attributes

Area: 69,600ha

Geology: All tertiary sediments (except Tvo and Tml)

Topography: >5° slope

Soil permeability: Predominantly moderate to high permeability with some areas of very very low and very low permeability. (Source: West Gippsland Soil Permeability GIS layer)

Annual Rainfall: 800-1000mm on average. (Source: West Gippsland Annual Rainfall GIS layer)

Annual Evaporation: 900-975mm on average. (Source: West Gippsland Annual Evaporation GIS layer)

Landuse: Predominantly farming and forestry. Small areas of native vegetation and mining. (Source: West Gippsland Landuse GIS layer)

4. Hydrogeology

Geology: Sands, gravels, clays

Aquifer type: Unconsolidated sediments

Hydraulic conductivity: Unknown

Aquifer transmissivity: Unknown

Aquifer storage coefficient: Unknown

Hydraulic gradient: Unknown

Yield: Unknown but expected to be low

Temporal recharge distribution: Likely to follow rainfall pattern (ie most recharge in winter and spring)

Spatial recharge distribution: Recharge likely to be greatest on sandier sections of the profile

Recharge estimate: Unknown but soils suggest a relatively high recharge

Aquifer uses: Irrigation, stock and domestic

Scale of groundwater flow path: Water table: Local (possibly with some intermediate influence) Latrobe Aquifer: Regional

Responsiveness to land management: Reasonably responsive given the local nature of flow systems

GFS 6: Tertiary sediments - high slope (Latrobe Gp recharge areas)

National GFS type most like (ref Coram et al., 1998): Local 8 – Discharge from low hydraulic conductivity aquifers

Groundwater flow between GFSs: Flow from GFS3 to GFS6 especially in the foothills areas of the Strzelecki Ranges

O.5 to 2km Recharge Recharge Tertiary Basalts (GFS3) Cretaceous Bedrock Cretaceous Bedrock Cretaceous Cretaceous Coal Measures Coal Measures Coal Measures Coal Measures

5. Conceptual model of recharge discharge relationship

6. Salinity Management Options

Current salinity management: NA

Recharge control options: Potential to revegetate cleared areas to reduce down-gradient salinity. Questionable effect given that most recharge is likely to be vertical to Latrobe Aquifer with little horizontal water table flow

Pasture or crop potential	Trees for biodiversity potential	Trees for forestry potential	Surface drainage potential	Irrigation management potential
Weak	Moderate	Moderate	Weak	Weak

Groundwater discharge enhancement options: None

Living with salt options: None

Conflicts with other NRM programs: If revegetation was an option for salinity control, there may be a conflict with sustainable management of the Latrobe Aquifer (Yarram WSPA) which is likely to discourage recharge reduction in this area. Also, there may be a further reduction to the baseflow of the Tarra River which has exhibited a decline over the last 20 years possibly due to the declining groundwater levels in the Latrobe Group Aquifer (SKM, 2005a)

Synergies with other NRM programs: Potential synergy with biodiversity and farm forestry program if tree planting is considered a viable option