
GFS 3: Tertiary Basalts

1. GFS definition

Geology constraint: Slope Constraint:	All Tertiary aged basalts (Tvo) None
Area constraint:	None
Rationale for choice of GFS:	Tertiary basalts likely to have connection to deeper Latrobe Group Aquifer
GFS priority:	Low

2. The salinity problem

Salinity occurrence: None (Source: West Gippsland Land Salinity GIS layer)

Assets being affected: None

Area of mapped land salinity: None (Source: West Gippsland Land Salinity GIS layer)

Area of primary and secondary land salinity: None (Source: West Gippsland Land Salinity GIS layer)

Area of wetland salinity: None

GFS 3: Tertiary Basalts

Surface water salinity: None Stations with <100% attainment of 90 percentile salinity SEPP: Waterhole Ck at Princes Hwy (90%), Bennetts Ck at Jeeralang Rd (82%)

Salinity process: None

Current area of less than 2m depth to water table: 10ha <2m (West Gippsland DTWT GIS layer)

Groundwater salinity: Unknown

Land salinity trend: None

Groundwater level trend: Unknown

3. Landscape attributes

Area: Strzelecki Ranges and Moe Basin

Geology: Tertiary basalts

Topography: Low rolling hills on edge of Strzelecki Ranges

Soil permeability: Predominantly high and moderate with some areas of very very low permeability. (Source: West Gippsland Soil Permeability GIS layer)

Annual Rainfall: In the Warragul area it varies between 1000-1200mm. In the Mirboo North area it generally ranges from 800mm-1100mm. (Source: West Gippsland Annual Rainfall GIS layer)

Annual Evaporation: 950-975mm in the Warragul area and 925-975mm in the Mirboo North area. (Source: West Gippsland Annual Evaporation GIS layer)

Landuse: Predominantly agriculture with some forestry and areas of native vegetation (Source: West Gippsland Landuse GIS layer)

4. Hydrogeology

Geology: Basalts interfingered with Tertiary Sands

Aquifer type: Fractured rock

Hydraulic conductivity: Vary laterally in the Yarragon formation

Aquifer transmissivity: Unknown

Aquifer storage coefficient: Unknown

Hydraulic gradient: Unknown

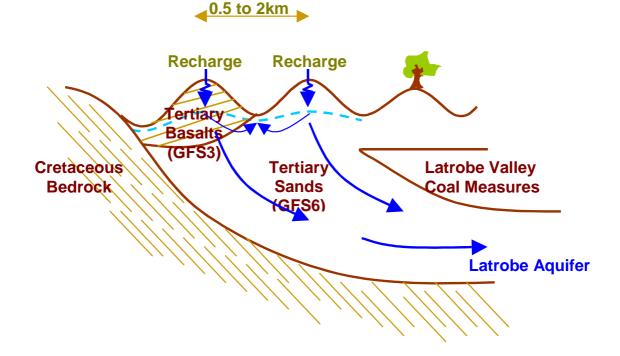
Yield: Unknown

Temporal recharge distribution: Likely to follow rainfall pattern (ie most recharge in winter and spring)

Spatial recharge distribution: Recharge likely to be greatest on sandier sections of the profile Recharge estimate: Unknown

Aquifer uses: Unknown

Scale of groundwater flow path: Local (possibly with some intermediate influence)


Responsiveness to land management: Likely to be relatively quickly given the local flow path

National GFS type most like (ref Coram et al., 1998): Local 3 – Discharge from weathered fractured rock aquifers at break of slope

GFS 3: Tertiary Basalts

Groundwater flow between GFSs: Flow from GFS 3 to GFS 6

5. Conceptual model of recharge discharge relationship

6. Salinity Management Options

Current salinity management: None

Recharge control options: Potential to revegetate cleared areas to reduce down-gradient salinity. Questionable effect given that most recharge is likely to be vertical to Latrobe Aquifer with little horizontal water table flow

Pasture or crop potential	Trees for biodiversity potential	Trees for forestry potential	Surface drainage potential	Irrigation management potential
None	Moderate	Moderate	Weak	None

Groundwater discharge enhancement options: None

Living with salt options: None

Conflicts with other NRM programs: If revegetation was an option for salinity control, there may be a conflict with sustainable management of the Latrobe Aquifer (Yarram WSPA) which is likely to discourage recharge reduction in this area

Synergies with other NRM programs: NA