| Cation Exchange Capacity | | 20.2
13.1
9.2
16.9
22.7 | 16.1
9.1
15.1
6.0
15.2 | 52.6
52.1
36.0 | 23.4
18.5
17.9
17.6 | 26.9
23.2
21.3
22.9 | 29.2
27.5
26.4
25.2
25.2 | |------------------------------|-----------------------------|--|---|--|--|--|---| | Exchangeable H+ meq/100g | | 11.6
5.8
3.0
3.9
4.4 | 11.6
6.3
8.2
<0.1
10.8 | 43.5
43.7
23.8 | 11.7
8.2
7.8
7.3 | 15.2
14.4
8.7
8.7 | 10.8
6.3
5.8
5.8
5.7 | | sases | Total Exchangeable B | 8.6
7.3
6.2
13.0
18.3 | 4.5
2.8
6.9
6.0
4.4 | 9.1
8.4
12.2 | 11.7
10.3
10.1
10.3 | 8.8
12.6
14.2 | 18.4
21.2
20.6
19.4
20.0 | | es | K+ meq/100g | 0.2
0.1
0.1
0.1 | 0.3
0.2
0.5
0.5
0.4 | 2.3 | 0.4
0.1
0.1 | 0.9
0.3
0.2
0.2 | 0.8
0.3
0.2
0.2
0.1 | | Exchangeable Bases | Na+ meq/100g | 0.7
0.7
0.7
1.9
3.1 | 0.2
0.2
0.3
0.2 | 0.4 | 0.3
0.3
0.4
0.5 | 0.7
0.3
0.2
0.3 | 0.4
0.7
0.6
0.7
0.7 | | nangeal | Mg++ meq/100g | 2.9
2.5
2.4
5.7
8.2 | 1.4
1.1
3.5
3.4
2.9 | 2.0
1.9
3.5 | 4.0
4.2
4.3
6.3 | 3.0
2.3
5.6
6.0 | 4.6
6.2
6.2
6.0
6.0 | | Excl | Ca ++ mcq/100g | 4.8
4.0
3.0
5.3
6.9 | 2.6
1.3
2.6
1.9
0.9 | 4.4
4.1
6.6 | 7.0
5.7
5.3
5.4 | 7.1
5.9
6.6
7.7 | 12.6
14.0
13.6
12.5
12.6 | | පි/සිr | Exchangeable Mn++ u | 21.6
5.0
5.0
5.0
5.0 | 34.4
9.0
2.0
1.0 | 30.7
22.0
<5.0 | 24.1
<5.0
<5.0
<5.0 | 54.6
35.5
7.4
<5.0 | 19.7 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 | | වි/විt | u +++IA əldsəgnsdəxI | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | 26
10
19
86
279 | 76
154
<\$ | \$ \$ \$ \$ | & = $&$ $&$ | $\wedge \wedge \wedge \wedge \wedge \wedge$ | | | g\gu q əldaliavA | 7.7
6.5
9.7
<1.0 | 3.1
<1.0
<1.0
<1.0 | 10.2
5.8
2.1 | 4.6
6.1
4.7
5.0 | 7.1
3.0
7.8 | 23.9
71.4
68.4
60.9
30.3 | | | g\gu X əldaliavA | 71
38
25
29
30 | 106
95
176
157 | 834
543
347 | 136
41
49
64 | 350
123
43
35 | 269
94
69
59
56 | | | 7 Total Nitrogen | 0.27
0.12
0.05
0.06
0.05 | 0.21
0.08
0.05
<0.05 | 1.14
0.77
0.29 | 0.19
0.07
0.05
0.05 | 0.35
0.22
0.09
0.07 | 0.21
<0.05 <0.05 <0.05
<0.05 <0.05 <0.05
<0.05 | | % t | Oxidizable Org. Carbor | 4.02 (1.94 (1.12 (| 3.54 (1.21 (0.54 (0.38 < 0.31 < | 9.57 (
2.94 (| 2.51 (0.92 (0.92 (0.77 (0.62 (| 5.35 (3.44 (0.98 (| 2.49 (0.60 < 0.44 < 0.36 < 0.38 < 0.38 < | | | % IO | | ., - 0 0 0 | _ 5, (4 | (1000 | 47 (17 0 0 | (4 0 0 0 0 | | Water | EC qg/m | 0.17
0.10
0.07
0.14
0.20 | 0.05
0.06
0.05
0.03 | 0.19
0.23
0.08 | 0.09
0.05
0.04
0.09 | 0.15
0.10
0.02
0.02 | 0.09
0.09
0.06
0.06
0.06 | | 1:5 Soil Water
Suspension | ph CaCl2 | 5.3
5.8
5.8
5.8
6.3 | 4.4
4.4
6.7
7
7
4.4
7
7
9
1
9
1
9 | 4.5 (4.5 (5.1 (5.1 (5.1 (5.1 (5.1 (5.1 (5.1 (5 | 5.6
5.8
5.8
5.8 | 4.8 (4.5 (5.3 (5.5 (6.5 (6.5 (6.5 (6.5 (6.5 (6.5 (6.5 | 5.5 (6.4 (6.4 (6.5 (6.5 (6.5 (6.5 (6.5 (6.5 (6.5 (6.5 | | - | OZH Hq | 5.6
6.5
7.2
7.2
7.2 | 5.5
5.8
5.8
5.7
5.7 | 5.3
5.2
6.1 | 5.8
6.6
6.8
6.9 | 5.9
5.3
6.4
6.8 | 6.4
7.0
7.4
7.4
7.6 | | S | Linear Shrinkage % | 7 | 15 | 9 | 10 | 41 | ∞ | | Atterberg Limits | Plasticity Index % | 6 | 29 | ∞ | 18 | Ξ | 15 | | erberg | Plastic Limit % | 20 | 22 | 41 | 22 | 35 | 36 | | Αtt | % 3imid biupid | 29 | 50 | 50 | 40 | 47 | 51 | | | Emerson Class | E5D
E3(1)
E2(1)
E2(2)
E2(3) | E3(1)
E3(2)
E5D
E6
E6 | E5C
E5C
E5C | E3(1)
E3(4)
E3(4)
E3(3) | E5C
E5B
E3(1)
E3(4) | E3(1)
E5B
E5A
E5B
E3B | | | % mm 4√0.0> səni∃ | 89 | 70 | 72 | 72 | 82 | 78 | | u u | Total Fine Earth % | 98
102
98
99 | 104
99
97
97 | 90
95
99 | 98
101
102
101 | 99
101
102
101 | 103
99
102
102
101 | | Particle Size Distribution | Clay % | 20
16
14
26
34 | 24
16
50
56
57 | 12
15
20 | 26
36
34
38 | 25
26
40
40 | 23
22
20
20
18 | | e Dist | % માંડ | 20
21
22
15
14 | 14
10
8
8 | 31
40
34 | 24
18
21
19 | 33
35
28
26 | 42
38
41
38
30 | | cle Siz | Fine Sand % | 36
53
56
47
44 | 25
28
17
15 | 37
33
32 | 35
32
33
32 | 35
34
30
30 | 27
32
32
38
44 | | Parti | Coarse sand % | 01 10 6 8 | 40
37
21
18 | 111
6
13 | £1 4 1 £1 | 2 9 4 4 | 11
8
8
6 | | | % mm2 - č7.4 ləvrə | abla abl | 24
30
18
32
36 | 01 09 9 | 2
44
47
38 | $\triangle \bowtie \triangle \triangle$ | 4
4
4
9
32 | | Air Dry Water Content % | | 2.97
1.93
1.51
3.09
4.37 | 1.21
0.50
2.35
2.56
3.30 | 9.53
9.99
8.90 | 4.57
6.23
6.33
5.55 | 5.04
4.27
6.26
6.71 | 3.94
5.03
5.15
5.03
4.38 | | | | _ | 90
230
425
570
980 | 60
275
550 | 185
690
905
1400 | 45
270
680
1100 | 240
605
760
980
1300 | | | Horizon Depth mm | 180
338
610
825
1020 | 0 21 4 20 2 | | | | | | | Horizon
Horizon Depth mm | A11 180
A12 338
A3 610
B21 825
B22 1020 | A1 9
A2 22
B21 45
B22 57
B23 98 | A1
A3
BC | A1
B21
B22
B3 | A11
A12
B21
B22 | A1
B21
B22
B23
B3 | | | | | | 930223 A1
930224 A3
930225 BC | 930186 A1
930187 B21
930188 B22
930189 B3 | 930190 A11
930191 A12
930192 B21
930193 B22 | 930231 A1
930232 B21
930233 B22
930234 B23 | | | nozinoH | A11
A12
A3
B21
B22 | A1
A2
B21
B22
B23 | | | | | | | Гарогаtогу <i>Мит</i> ъъсг | R4 930194 A11
R4 930195 A12
R4 930196 A3
R4 930197 B21
R4 930198 B22 | 930573 A1
930574 A2
930575 B21
930576 B22
930577 B23 | R9 930223
R9 930224
R9 930225 | 930186
930187
930188
930189 | 930190
930191
930192
930193 | 930231
930232
930233
930234
930235 | | Particle Name Nam | | | 204960 | 168748 | <u> </u> | 6 + 9 8 3 | 9 2 2 8 | 1 % 4 2 | |--|--------------------------|------------------------|---|---|----------------------------|---|--|--------------------------------------| | Particle Nava Distribution | Cation Exchange Capacity | | 24.5
19.0
6.4
10.6
22.9
51.0 | | | | 20.6
11.6
7.7
14.5 | | | New York 1965 196 | Exchangeable H+ meq/100g | | 18.6
15.4
15.4
4.2
6.7
11.6 | 23.1
15.7
13.8
11.4
10.3 | 14.4
10.7
6.6 | 13.2
6.6
4.6
3.8
6.9 | 8.3
8.3
6.0
9.7 | 15.5
5.5
9.0
6.3 | | Number Part Particle Size Distribution | sases | Total Exchangeable B | 5.9
3.6
2.2
3.9
11.3
32.4 | 17.0
17.6
25.7
32.3
37.1
42.1 | 9.3
9.2
8.0 | 3.1
2.2
2.3
2.3
2.6
8.7 | 6.2
3.3
1.7
4.8
6.9 | 5.6
2.8
8.4
6.9 | | Marchey Lange Lang | ses | K+ meq/100g | 0.6
0.2
0.2
0.7
0.9
0.9 | 0.4
0.1
0.2
0.2
0.2 | 0.6 | 0.5
0.1
0.2
0.3
0.5 | 0.4
0.3
0.5
0.5 | 0.5
0.5
0.5
0.4 | | Marchey Lange Lang | ıble Ba | Na+ meq/100g | 0.3
0.1
0.4
1.3
5.3 | 1.1
0.5
0.9
1.8
2.5
2.9 | 0.3 | 0.1
0.1
0.1
0.3 | 0.1
0.2
0.2
0.2 | 0.3
0.2
0.6
0.5 | | Marchey Lange Lang | hangea | g001/psm ++gM | 1.6
1.0
0.7
1.7
6.9 | 6.7
7.5
14.5
18.4
20.1 | 3.7 | 0.7
0.4
0.4
0.6
5.1 | 1.4
0.9
0.7
2.9
4.8 | 1.5
0.9
4.4
4.0 | | Particle Size Distribution Autorizon Depth mmn Li Sali Water Linear Shrinking L | Exc | Ca ++ meq/100g | 3.4
2.3
1.2
1.1
2.2
4.3 | 8.8
9.5
10.2
11.9
14.3 | 5.6
5.2
4.0 | 1.8
1.6
1.6
2.8 | 4.3
2.0
0.5
1.2
1.4 | 3.4
1.2
2.9
2.0 | | Puritie Size Distribution | 3/3n | Exchangeable Mn++ | 32.4
9.5
<5.0
11.2
6.5 | 41.3
26.5
<5.0
<5.0
<5.0 | 9.2 <5.0 | 30.4
11.1
<5.0
<5.0 | 20.5
<5.0
<5.0
<5.0
<5.0 | 16.4
<5.0
<5.0
<5.0 | | Particle Size Distribution | ිි නි | Exchangeable Al+++ | 37
78
18
55
88
88 | \$ \$ \$ \$ \$ \$ \$ | o | 72
35
24
17
5 | 6 % ± 8 % | e & & & & | | Suppression | | g\gu q əldaliavA | 8.0
3.6
41.0
2.2
41.0 | 5.2
2.4
2.4
5.1.0
5.1.0 | 3.0
2.1
<1.0 | 0.4.0
0.1.0
0.1.0
0.1.0 | 2.2
6.1.0
7.1.0
7.1.0 | 2.4
<1.0
<1.0
<1.0 | | Silic Zummber Congress small Silic Size Distribution Congress small Silic Zummber Congress small Silic Zummber Congress small Silic Zummber Congress small Size Si | | g\gu X silable K | 254
81
74
299
302
167 | 145
45
51
64
50
65 | 233
56
38 | 184
81
107
145
178 | 158
107
119
181
202 | 167
200
195
140 | | Silic Zummber Congress small Silic Size Distribution Congress small Silic Zummber Congress small Silic Zummber Congress small Silic Zummber Congress small Size Si | | % nagorii/ IstoT | 0.40
0.22
<0.05
<0.05
0.05
0.06 | 0.53
0.22
0.19
0.10
0.06 | 0.34
0.19
0.15 | 0.24
0.07
:0.05
:0.05 | 0.16
0.07
:0.05
:0.05 | 0.15 <0.05 <0.05 <0.05 <0.05 <0.05 | | Sign Watter Sign | % u | Oxidizable Org. Carbon | · · · · | v | | * * * | * * * | | | Sile Number Coarse sand % | | % IO | | | | | ., | ,, , , | | Sile Number Coarse sand % | Water | EC qg/m | 0.08
0.02
0.09
0.09
0.08 | 0.17
0.05
0.06
0.12
0.09 | 0.09
0.03
0.04 | 0.05
0.04
0.03
0.03 | 0.07
0.07
0.06
0.05
0.03 | 0.08
0.04
0.08
0.09 | | Sile Number Coarse sand % | :5 Soil
Suspe | ph Cacl2 | 2, 4, 4, 4, 4, 2, 4, 4, 8, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 4, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, | 5.0
5.5
5.8
6.1
6.3 | 4.6
4.7
5.0 | 4.3
4.6
4.8
4.8
5.4 | 4.8
5.1
4.8
4.8
5.3 | 5.0
5.1
5.3
5.3 | | Silie Aummber Particle Size Distribution Particle Size Distribution Altrerberg Limits Aummber | _ | Hq | 5.5
5.4
5.5
5.9
5.9
5.6 | 5.8
6.2
6.7
6.9
7.4
7.4 | 5.6
5.9
6.2 | 5.2
5.4
5.6
5.9
6.1 | 5.7
6.0
5.7
5.8
6.1 | 6.0
6.2
6.1
6.0 | | Richard Line Particle Size Distribution Particle Size Distribution Coarse sand % Air Dry Water Confern W | its | Linear Shrinkage % | 13 | 19 | 7 | - | 10 | 13 | | Richard Line Particle Size Distribution Particle Size Distribution Coarse sand % Air Dry Water Confern W | g Lim | Plasticity Index % | 25 51 | 40 | 13 | $\overline{\vee}$ | == | 7 | | Richard Line Particle Size Distribution Particle Size Distribution Coarse sand % Air Dry Water Confern W | tterbe | Plastic Limit % | 18 | 34 | 22 | 20 | 25 | 33 | | Sile Number Sile Number Sile Number Sile Number Sile Number Sile Number Laboratory Number Horizon Sile Sile N | _ < | % 1imid biupid | 42 76 | 74 | 35 | 21 | 36 | 40 | | Silite Number Particle Size Distribution Particle Size Distribution Silite Number Laboratory Number Content % Horizon Depth mm Miles 930218 A21 A21 A22 A23 A22 A23 A23 A24 A2 | | Emerson Class | E5C
E5B
E3(1)
E2(1)
E1 | E3(1)
E3(2)
E3(1)
E5A
E3(1)
E3(2) | E3(1)
E3(2)
E3(2) | E3(1)
E3(1)
E3(1)
E3(1)
E6 | E3(1)
E3(1)
E5B
E5C
E5C | E3(1)
E2(1)
E5D
E6 | | Silie Aumber Silie Aumber Silie Aumber Silie Aumber Silie Aumber Silie Aumber Alir Dry Water Content % Alir Dry Water Content % Silie Alir Dry Water Content % Silie Alir Dry Water Content % Silie Alir Bis Silie Ali Alir Bis Silie Ali Silie Alir Bis Ali | | % mm 470.0> səni I | 88 | 8 | 69 | 71 | 61 | 57 | | RI 930189 All 1 Sirie Number RI 930189 All 35 447 All 100 200 8 11.17 2 12 2 12 2 12 2 12 2 12 2 12 2 1 | uc | Total Fine Earth % | 96
100
101
88 | 93
100
100
100
101 | 96
102
101 | 97
102
100
101
100 | 97
98
97
98 | 97
100
98
99 | | RI 930189 All 1 Sirie Number RI 930189 All 35 447 All 100 200 8 11.17 2 12 2 12 2 12 2 12 2 12 2 12 2 1 | tributi | Clay % | 20
20
17
43
68 | 38
31
62
74
72
58 | 22
18
16 | 9 8 9 9 4 5 4 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 | 11
12
13
37
46 | 12
12
34
30 | | RI 930189 All 1 Silie Number RI 930189 All 1 Silie Number RI 930189 All 35 4.47 All 100 Silie Number RI 930189 All 35 5.79 2 12 2 2 300278 All 1 Silie Number RI 930189 All 35 4.47 All 10.2 66 0.04 1 1 1 2 5 5.79 2 1 1 2 2 300278 All 1 Silie Number RI 930220 B22 B3 990 15.97 1.2 2 1 2 2 300578 All 1 Silie Number RI 930238 930239 All 1 Silie Number RI 930278 All 1 Silie Number RI 930278 All 1 Silie Number RI 930279 | ize Dis | % 1I!S | 32
31
26
26
11 | 27
32
18
11
11
16 | 22
29
26 | 32
33
33
36
24 | 13
13
9
8 | 15
8
9 | | RI 930189 All 1 Silie Number RI 930189 All 1 Silie Number RI 930189 All 35 4.47 All 100 Silie Number RI 930189 All 35 5.79 2 12 2 2 300278 All 1 Silie Number RI 930189 All 35 4.47 All 10.2 66 0.04 1 1 1 2 5 5.79 2 1 1 2 2 300278 All 1 Silie Number RI 930220 B22 B3 990 15.97 1.2 2 1 2 2 300578 All 1 Silie Number RI 930238 930239 All 1 Silie Number RI 930278 All 1 Silie Number RI 930278 All 1 Silie Number RI 930279 | ticle S | Fine Sand % | 38
35
35
24
16 | 23
24
11
11
16 | 38
39
38 | 52
52
49
37 | 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 45
48
26
35 | | RI 930189 All 35 447 RI 930189 All 35 447 RI 930189 All 35 447 RI 930181 Al2 155 5.79 RI 930181 Al2 155 5.79 RI 930182 A21 350 1.92 RI 930182 A21 350 1.92 RI 930184 Bl 730 8.17 RI 930185 A21 155 5.79 RI 930185 A21 155 5.79 RI 930187 Al 150 6.04 RI 930278 Al 110 2.66 RI 930278 Al 110 2.66 RI 930238 B21 460 1.73 RI 930238 B21 450 0.81 RI 930238 B21 450 0.81 RI 930237 Al 250 1.32 RI 930277 Al 250 1.32 RI 930277 Al 250 1.32 RI 930278 Al 110 2.66 RI 930277 Al 250 1.32 RI 930278 Al 110 2.66 RI 930277 Al 250 1.32 RI 930278 Al 110 2.66 RI 930277 Al 250 1.32 RI 930278 Al 110 2.66 RI 930277 Al 130 2.56 | Par | Coarse sand % | 6
14
20
17
3 | 5
7
7
6
6 | 13
15
21 | 6 8 9 8 5 | 29
31
30
26
19 | 26
26
30
25 | | RI 930189 All 35 RI 930189 All 35 RI 930189 All 35 RI 930181 Al2 155 RI 930181 Al2 155 RI 930181 Al2 155 RI 930182 A21 350 RI 930184 Bl 260 RI 930184 Bl 260 RI 930185 A2 810 RI 930185 A2 810 RI 930185 A2 810 RI 930187 Al 110 RI 930257 Al 110 RI 930277 Al 220 RI 930277 Al 220 RI 930277 Al 220 RI 930277 Al 110 RI 930278 A2 400 RI 930277 Al 130 | | % mm2 - ¿7.4 ləvrə | 2
12
76
63 | \(\text{\lambda} \) | 22
31
43 | $ \ \ \triangle \ \ \triangle \ \ \triangle \ \ \triangle $ | 4 ~ △ △ △ | △ ω ω 4 | | Site Number R1 930180 A111 R1 930183 A22 R1 930183 A22 R1 930184 B1 R1 930183 A22 R1 930184 B21 R1 930184 B21 R2 930210 B221 R8 930219 B21 R8 930219 B21 R8 930219 B21 R12 930236 A11 R12 930236 A11 R12 930236 A11 R12 930237 A12 R12 930239 B22 R14 930276 A11 R14 930276 A11 R14 930277 A12 R14 930272 A1 R2 930273 A2 R2 930278 A2 R2 930279 B2 R2 930279 B2 R2 930279 B2 R2 930276 A11 R2 930276 A11 R2 930276 A11 R2 930277 A12 R3 | Air Dry Water Content % | | 4.47
5.79
1.92
8.17
11.17 | 8.79
6.04
10.24
14.14
14.66
15.97 | 2.66
1.83
1.73 | 1.52
1.32
0.81
5.92
6.04 | 2.66
1.42
1.11
4.05
6.38 | 2.56
1.01
6.37
5.15 | | Sile Number RI 930183 RI 930184 RI 930187 RI 930187 RI 930187 RI 930187 RI 930187 RI 930187 RI 930217 RI 930237 RI 930277 | | Horizon Depth mm | 35
155
350
610
730
825 | 60
260
520
810
915
990 | 110
320
460 | 85
250
450
700
1300 | 110
220
400
610
810 | 130
520
850
1500 | | Sile Number S | | noziroH | A11
A12
A21
A22
B1
B2 | A1
B1
B21
B22
B23
B3 | A1
B2
B3 | A11
A12
B21
B22
B3 | A11
A12
A2
B2
B3 | A1
A2
B2
B3 | | Sile Number S | | Гарогаюту Литрег | 930180
930181
930182
930183
930184 | 930217
930218
930219
930220
930221 | 930578
930579
930580 | 930236
930237
930238
930239
930240 | 930276
930277
930278
930279
930280 | 930272
930273
930274
930275 | | | | Site Number | 1 | | | | | | | | | inU qeM | (Abg
(Abg
(Abg
(Abg
(Abg
(Abg
(Abg
(Abg | Qbh
Qbh
Qbh
Qbh | | | Dgal I
Dgal I
Dgal I
Dgal I | Dgbl l
Dgbl l
Dgbl l
Dgbl l | | | _ | 7 3 6 6 | 7 - 2 - 2 | 6 - 6 | 2.2.2 | 2 4 8 9 4 | |------------------------------|------------------|---|---|----------------------------|--------------------------------------|--| | Cation Exchange Capacity | | 32.6
5 22.6
17.3
13.7 | 8.1
8.1
8.5
5.3
6.0
12.1 | | 26.7
7 15.2
9.6
12.5 | 51.5
42.2
32.4
32.8
32.6
32.6
24.4 | | Exchangeable H+ meq/100g | | 26.6
16.6
11.1
8.0 | 12.5
7.7
7.9
4.7
4.6
8.5 | 22.2
10.4
5.4 | 21.1
12.7
7.6
7.8 | 31.9
29.5
24.1
20.9
25.9
16.9 | | Total Exchangeable Bases | | 6.0
6.0
6.2
5.7 | 1.2
0.4
0.6
0.6
1.4
3.6 | 2.7
1.7
2.6 | 5.6
2.5
2.0
4.7 | 19.6
12.7
8.3
7.9
6.7 | | ses | $g001/psm \ + M$ | 0.7
0.8
0.9 | 0.2
0.1
0.1
0.2
0.2 | 0.4 | 0.5
0.3
0.2
0.5 | 1.7
1.4
0.7
0.8
0.9 | | Exchangeable Bases | Na+ meq/100g | 0.2
0.2
0.2
0.1 | <pre><0.1 <0.1 0.1 0.1 0.2 0.5</pre> | 0.2
0.5
0.3 | 0.4
0.2
0.2
0.2 | 0.3
0.2
0.2
0.2
0.2 | | change | Mg++ meq/100 | 2.2
2.3
2.9
2.4 | 0.5
0.2
0.3
0.3
1.0
3.0 | 1.4
0.8
1.4 | 1.3
0.7
0.7
2.4 | 5.9
4.1
2.7
2.9
2.2
3.5 | | Exc | Ca ++ meq/100g | 2.9
2.3
2.3 | 0.5
0.1
0.1
<0.1
<0.1 | 0.7
0.1
0.5 | 3.4
1.3
0.9
1.6 | 11.7
6.9
4.7
4.0
3.4 | | ਡੋ/ਡੋn ++uJ⁄ | Exchangeable N | 13.1
7.3
<5.0
<5.0 | \$\langle \cdot \cd | 11.3
\$5.0
\$5.0 | 34.9
6.1
1.0
<\$.0 | 7.6
12.9
7.4
5.3
8.5
<5.0 | | ਡੋ/ਡੋn +++[| A sldssgnsds A | 04
0 | 122
123
111
73
109
380 | 254
174
77 | 50
33
26
<5 | \$\frac{19}{47}\$ | | S. | g\gu q əldaliavA | 0.1
0.1
0.1
0.1
0.1
0.1
0.1 | 2.2
2.2
61.0
61.0
61.0 | 3.4
<1.0
<1.0 | 2.0
<1.0
<1.0 | 3.3
2.0
2.0
6.1.0
6.1.0
6.1.0 | | Ģ. | Available K ug/g | 259
308
294
271 | 74
55
54
43
59
35 | 141
121
149 | 205
130
122
172 | 610
445
272
297
283
129 | | % | negortiV latoT | 0.20
0.08
<0.05
<0.05 | 0.14
0.07
0.05
<0.05
<0.05 | 0.23
0.05
<0.05 | 0.27
0.12
0.06
0.05 | 0.51
0.38
0.20
0.16
0.18
0.06 | | Carbon % | Oxidizable Org. | 4.03
1.77
0.83 | 2.43
1.61
0.96
0.57
0.45 | 5.01
1.52
1.11 | 6.57
2.85
1.31
0.60 | 9.55
6.01
2.95
1.90
2.66
0.91 | | | CI % | | | | | | | 1:5 Soil Water
Suspension | EC dS/m | 0.04
0.03
0.08
0.03 | 0.03
0.02
0.02
0.02
0.02 | 0.08 | 0.13
0.06
0.05
0.07 | 0.11
0.05
0.03
0.03
0.03 | | Suspe | pH CaCl2 | 5.0
5.3
5.4
5.4 | 4 4 4 4 4 4
1. £ £ 4 £ 5 | 3.8
4.4
4.6 | 4.6
4.7
4.7
4.7 | 5.3
5.0
6.4
9.9
6.9 | | | Hq | 6.2
6.4
6.1
6.3 | 5.3
5.5
5.5
5.8
5.7 | 4.8
5.3
5.7 | 5.6
5.8
5.9
6.0 | 6.2
6.2
6.2
6.2
6.1 | | its % 9 | Linear Shrinkag | 10 | 4 41 | 3 | Ś | 10 | | Atterberg Limits | Plasticity Index | 18 | 4 72 | 9 | ∞ | 14 | | tterber | Plastic Limit % | 25 | 15 20 | 21 | 21 | 35 | | A S | % 1imiJ biupiJ | 43 | 19 | 26 | 29 | 49 | | | Emerson Class | E5C
E5B
E6
E6 | E3(1)
E3(1)
E3(2)
E3(2)
E5B
E5B | E3(1)
E3(1)
E3(1) | E5D
E5C
E3(1)
E5C | E5D
E3(1)
E5B
E5C
E5C
E5C
E5C | | % u | īm 470.0≥ səni∃ | 65 | 58 | 56 | 47 | 83 | | u | Total Fine Earth | 99 99 100 | 99
100
99
99
98 | 94
96
100 | 97
98
99
98 | 99
100
99
98 | | tributi | Clay % | 33
33 | 10
8
9
9
15
37 | 14
13
17 | 1 | 10
13
28
34
26
44 | | ze Dis | % IIIS | 21
41
41
41 | 12
12
12
13
7 | 18
19
19 | 18
16
16
14 | 36
33
33
32
33
23 | | Particle Size Distribution | Fine Sand % | 30
30
30
28 | 38
40
40
41
37
25 | 44
34
35 | 22
23
24
15 | 37
34
31
35
29 | | Par | Coarse sand % | 22 22 25 25 | 39
37
38
38
34 | 18
31
29 | 44
42
72 | 10 10 6 4 6 6 6 7 | | % mm2 - 27.4 levrið | | 2
32
45
11 | 2 △ △ ∞ − △ | 18
17
37 | 13 12 28 | 22 2 2 4 4 6 \rangle | | Air Dry Water Content % | | 9.03
4.28
3.20
5.13 | 1.42
0.50
0.70
0.10
0.60
2.98 | 2.52
1.01
1.21 | 2.66
1.93
1.01
3.40 | 8.46
7.40
5.36
5.58
6.48
6.27 | | Horizon Depth mm | | 375
680
745
995 | 100
180
270
610
980
1250 | 85
320
520 | 120
280
420
670 | 140
240
380
720
990
1400 | | nozinoH | | 2A
2B1
2B2
2B2
2B3 | A10
A11
A12
A13
A3
B21 | A1
B1
B2 | A11
A12
B2
B3 | A10
A11
A3
B11
B12
B2 | | Гарогатогу Литрег | | 930281
930282
930283
930284 | 930290
930291
930292
930293
930294 | 930302
930303
930304 | 930581
930582
930583
930584 | 930296
930297
930298
930299
930300 | | | Site Number | | | 0 0 0 | | ∞ ∞ ∞ ∞ ∞ ∞ | | | Site Number | R15
R15
R15
R15 | R17
R17
R17
R17 | R19
R19
R19 | R23
R23
R23
R23 | R18
R18
R18
R18
R18 | | Cation Exchange Capacity | | 23.4
23.1
17.5
15.6
15.3 | 16.6
7.5
5.0 | 28.8
9.3
13.9
17.2
14.2 | 32.0
10.3
18.2
16.7
14.4 | 41.9
29.8
24.3
21.2
19.9
16.1
17.1 | |------------------------------|------------------------|--|----------------------------|---|---|--| | Exchangeable H+ meq/100g | | 19.1
20.7
15.0
12.6
12.5 | 10.9
3.8
2.2 | 23.7
7.6
11.9
14.6 | 24.8
7.9
16.0
15.2
12.7 | 27.9
23.7
19.2
16.7
15.5
11.5
9.2
5.1 | | sases | Total Exchangeable B | 4.3
2.4
2.5
3.0
2.8 | 5.7
3.7
2.8 | 5.1
1.7
2.0
2.6
3.3 | 7.2
2.4
2.2
1.5
1.7 | 14.0
6.1
5.1
4.5
4.4
4.6
7.9
8.5 | | SS | K+ meq/100g | 0.9
0.3
0.2
0.2
0.2 | 0.2 0.1 0.1 | 0.8
0.2
0.2
0.2
0.2 | 1.5
0.3
0.3
0.2 | 1.4
0.6
0.8
0.7
0.8
0.5
0.3 | | Exchangeable Bases | Na+ meq/100g | 0.3
0.1
0.3
0.3 | 0.1 | 0.3
0.1
0.2
0.3 | 0.2
0.1
0.1
0.2 | 1.0
0.7
0.7
0.6
0.6
0.8
1.2 | | angeab | g001/psm ++gM | 0.7
0.6
1.1
1.9 | 1.1 | 1.2
0.4
0.8
1.6
2.4 | 1.7
0.8
1.0
0.8 | 5.3
2.8
2.5
2.4
2.4
3.1
6.3 | | Exch | Ca ++ meq/100g | 2.4
1.4
0.9
0.6
0.4 | 4.0
2.4
1.6 | 2.8
11.0
0.8
0.5
0.3 | 3.8
1.2
0.8
0.3 | 6.3
2.0
1.1
0.8
0.6
0.2
0.1 | | 3/3r | Exchangeable Mn++ u | 17.5 | 29.6
11.1
<5.0 | 10.3
<5.0
<5.0
<5.0
<5.0 | 24.2
<5.0
<5.0
<5.0
<5.0 | 88.0 63.7 37.5 27.2 62.9 69.2 65.0 65.0 65.0 | | - | Exchangeable Al+++ u | 62 1
207 <
580 <
931 <
698 < | \$ \$ \$ \$ | 62 1
128 <
496 <
730 <
591 < | 18 2
209 < 7112 < 728 < 760 < 760 < 760 | 113 8
1152 6
1176 3
1169 2
1150 2
5 < 5 < 5 | | , | g\gu q əldslisvA | 4.8 (4.10 2) (4.10 5) (4.10 9) (4.10 6) (4.10 6) | 3.0 | 7.8 6
<1.0 1
<1.0 4
<1.0 7
<1.0 7 | 8.0
1.4
2
4.1.0
7
7
7
7
7
7
7
7
7 | 11.5 1
2.3 1
1.6 1
1.6 1
1.8 1
<1.0 <1.0 <1.0 <1.0 | | | | | | | | | | | g\gu X əldaliavA | 5 339
7 112
5 76
5 69
5 94 | 0 92
7 70
5 66 | 5 327
15 101
5 68
5 86
5 86
5 116 | 5 548
0 107
7 119
7 104
5 83 | 8 544
8 280
8 280
7 262
2 285
8 170
8 170
15 84 | | | % nagortiV latoT | 0.35
0.07
0.06
0.06
0.06 | 0.20
0.07
0.05 | 0.46
<0.05
0.06
0.06
0.05 | 0.76
0.10
0.07
0.07
0.05 | 0.98
0.27
0.18
0.17
0.12
0.08
0.05 | | % U | Oxidizable Org. Carbor | 5.75
1.62
0.85
0.50
0.35 | 2.96
1.31
0.69 | 9.59
0.91
0.87
0.58
0.24 | 9.03
1.22
0.79
0.59
0.34 | 14.02
4.08
2.60
2.51
2.18
1.44
1.13
0.54 | | e . | % IO | | | | | | | 1:5 Soil Water
Suspension | EC dS/m | 0.09
0.04
0.06
0.06
0.06 | 0.03
0.02
0.02 | 0.15
0.03
0.05
0.05
0.07 | 0.11
0.04
0.04
0.04 | 0.18
0.07
0.08
0.06
0.05
0.07
0.07 | | 1:5 Sc
Susp | pH CaCl2 | 3.6
4.0
4.1
4.0
4.0 | 4.8
5.2
5.2 | 3.6
3.8
4.0
4.0
4.0 | 3.7
3.9
3.9
4.0
4.0 | 7.4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | | Hq | 4.8
5.0
5.0
5.1
5.1 | 5.9
6.3
6.3 | 4.7
4.9
5.0
5.2
5.3 | 5.1
5.0
5.0
4.8
5.0 | 5.7
5.6
5.7
5.8
5.9
5.9
6.0
6.3 | | nits | Linear Shrinkage % | 10 | 2 | Ξ | 10 | 7 | | rg Lin | Plasticity Index % | 20 | 7 | 23 | 16 | 14 | | Atterberg Limits | Plastic Limit % | 26 | 21 | 29 | 25 | 29 | | A | % 1imid biupid | 46 | 22 | 52 | 41 | 44 | | | Emerson Class | E3(1)
E3(3)
E3(2)
E5B
E3(2) | E5B
E3(1)
E3(1) | E3(1)
E2(1)
E2(1)
E2(1)
E2(2) | E5D
E3(2)
E3(2)
E3(2)
E5(2) | E3(1) E3(2) E3(2) E3(3) E3(3) E2(1) E2(1) E1 E2(3) | | | % mm 470.0> səni∃ | 88 | 28 | 94 | 87 | 88 | | u | Total Fine Earth % | 93
100
100
98
98 | 100 | 91
100
102
102 | 94
97
101
100 | 88
100
102
101
101
101
102 | | tributic | Clay % | 14
20
63
64
52 | 12 13 | 16
14
38
66
52 | 12
20
53
56
48 | 44 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | Particle Size Distribution | % IIIS | 18
20
13
12
17 | 18
20 | 18
21
24
19
25 | 15
20
20
21
21 | 27
40
33
33
33
30
26 | | ticle S | Fine Sand % | 55
53
22
20
20
27 | 49
45
53 | 52
59
38
16
25 | 54
22
22
44
45 | 11
13
19
21
25
24
26 | | Par | Coarse sand % | 2 3 9 7 | 14
22
16 | 3 % 0 0 0 | 13
9
2
3 | 9 7 8 4 8 7 4 4 | | | % mm2 - c7.4 levred | 49
29
9
26
34 | 18
14
34
45 | 28
4 4 6 4 0 4 4 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 57
36
5
14
13 | 9 1 2 1 2 2 6 | | % | Air Dry Water Content | 2.66
1.31
3.51
3.41
2.56 | 1.94
0.91
0.60 | 3.09
0.81
1.21
2.77
1.93 | 5.03
1.41
3.20
2.45
3.35 | 8.65
4.48
4.16
4.48
3.63
2.56
2.35
2.45 | | | Horizon Depth mm | 125
220
430
740
860 | 150
280
445 | 135
190
420
790
1060 | 90
185
455
635
925 | 20
160
300
402
510
760
965
1330 | | noziroH | | A1
A2
B21
B22
B22
B23 | A1
B21
B22 | A11
A12
B1
B2
B3 | A1
A2
B21
B22
B23 | A1
A2
B1
B21
B22
B23
B24
B3 | | | Laboratory Number | 930204
930205
930206
930207
930208 | 930241
930242
930243 | 930226
930227
930228
930229 | 930199
930200
930201
930202 | 930209
930210
930211
930212
930214
930215 | | | Site Number | R6
R6
R6
R6
R6 | R13
R13
R13 | R10
R10
R10
R10 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | R7
R7
R7
R7
R7 | | inU qsM | | 2 2 2 2 2 | Ssb
Ssb
Ssb | Ssc
Ssc
Ssc
Ssc | SSd
SSd
SSd
SSd | Ssh
Ssh
Ssh
Ssh
Ssh
Ssh | | | iinU qeM | Ssa
Ssa
Ssa
Ssa
Ssa | <i></i> | | <u> </u> | × × × × × × × |