APPENDIX D. PHYSICAL LABORATORY RESULTS

			Particle Size Distribution											1	Atterber	g Limit	s
Map Unit	Site Number	Laboratory Number	Horizon	Horizon Depth mm	Air Dry Water Content	Gravel > 2mm %	Coarse sand %	Fine Sand %	Silt %	Clay %	Total Fine Earth %	Fines <0.074 mm %	Emerson Class	Liquid Limit %	Plastic Limit %	Plasticity Index %	Linear Shrinkage %
Qa1 Qa1 Qa1 Qa1	S 9 S 9 S 9 S 9	940542 940543 940544 940545	A11 A12 B2 B3	220 340 700 1120	1.32 0.99 1.18 0.99	6 9 17 3	5 5 4 14	47 47 46 47	31 29 24 18	17 18 23 18	100 99 98 98	79 81 79 60	E8 E3(4) E3(4) E3(4)	24	17	7	6
Qap Qap Qap Qap Qap	S 8 S 8 S 8 S 8	940538 940539 940540 940541	A1 A2 B2 B31	130 220 770 1060	0.69 0.30 3.59 1.20	0 7 33 31	15 12 2 5	47 46 17 55	27 33 30 18	11 11 51 19	99 101 99 98	70 74 95 70	E8 E2(1) E3(4) E2(3)	48	18	30	11
Qbd Qbd Qbp	S11 S11 S12	940546 940547 940548	A1 B2 A1	70 200 80	5.23 8.25 5.61	10 61 12	12 21 9	36 32 32	25 22 15	24 25 41	97 99 97	72 67 78	E8 E3(1) E8	49	30	19	13
Qbp Tff	S12 M22	940549 N/A	B2 A1	510 145	8.77 1.00	45 44	3	19	11	64	97	89	E3(4) E2(2)	77	26	51	10
Tff Tff Tsf	M22 M22 M19	N/A N/A 911300	A2 B A1	445 1120 80	1.00 1.90 1.9	19 34 5	9	61	12	18	100		E2(2) E5(D) E3(2)	38	20	18	12
Tsf Tsf Tsf	M19 M19 M19	911301 911302 911303	A2 B21 B22	170 305 800	1.2 2.4 2.5	9 11 10	12 8 7	62 51 50	13 12 9	13 29 34	100 100 100	69	E3(3) E1 E1	32 35	28 16	3 19	10 12
Dga Dga Dgf	S 1 S 1 S 4	940520 940521 940525	A11 A12 A1	120 460 180	1.49 1.12 1.88	20 42 13	45 43 32	30 33 38	12 15 12	12 8 17	99 99 99	37 39 51	E8 E3(1) E7	25	22	4	4
Dgf Dgf	S 4 S 4	940526 940527	A2 B2	620 1000	0.19 3.66	40 53	50 24	34 20	6 4	10 48	100 97	35 63	E3(2) E2(1)	58	19	39	14
Dgh Dgh Dgh	S 3 S 3 S 3	940522 940523 940524	A1 B1 B21	80 285 400	2.241.490.90	1 4 35	38 42 45	28 27 29	15 14 13	18 16 13	100 99 99	48 47 44	E7 E7 E3(1)	22	17	5	5
Osc Osc	S 7 S 7 S 7	940535 940536 940537	A1 B2 B3	80 240 360	2.87 1.41 2.22	21 36 55	17 10 5	30 24 11	28 40 38	20 25 44	96 99 98	63 80 89	E8 E3(3) E2(1)	26	20	6	5
Osf Osf Osf	S 5 S 5 S 5	940528 940529 940530	A1 A2 B2	80 210 680	0.69 0.10 5.21	3 13 20	42 42 11	43 48 12	3 4 3	9 5 73	98 99 99	29 29 81	E8 E3(2) E1	71	26	45	16
Osh Osh	S13 S13	940550 940551	A11 A12	60 170	0.91 0.80	2 9	42 21	42 51	9 16	6 12	99 99	31 55	E8 E8	, 1	20		
Osh Osh	S13 S13	940552 940553	A2 B2	480 610	0.10 1.29	3 15	28 16	55 50	10 10	6 24	99 100	46 60	E3(2) E2(1)	19	14	5	5

APPENDIX D. PHYSICAL LABORATORY RESULTS

Cation Exchange Capacity		13.6	10.3	7.4	9.2	4.9	9.5	37.1	40.1	34.1	0.44				23.5	15.4	17.9	17.9	16.3	10.1
g001/p	Exchangeable H+ meq/100g		4.1	2.9	8.0	5.3	2.3	17.8	11.1	0.6	9.6				17.1	10.4	8.5	2.4	6.7	7.2
oita	Oalcium:Magnesium Ratio		2.1	1.6	2.5	4.1	0.3	1.9	1.6	1.5	1.0				0.7	0.3	0.1	0.1	5.5	3.0
gases	Total of Extractable Bases		6.2	4.5	1.2	12.7	7.2	19.3	29.0	25.1	38.4				6.4	2	9.4	15.5	9.9	2.9
	g001\psm +sN	0.1	0.1	0.1	0.1	0.1	=======================================	0.2	9.0	9.0	1.8				0.2	0.2	-	3.7	0.1	0.1
le Bases	K+ meq/100g	0.5	0.2	0.2	0.4	0.9	0.3	2.3	1.1	1.2	8.0				6.0	0.2	0.3	9.0	1.3	8.0
Extractable Bases	g001\psm ++gM	1.1	1.9	1.6	0.2	0.0	4.4	5.8	10.5	9.5	17.8				3.5	3.6	7.1	6.6	8.0	0.5
Ш	Ga ++ meq/100g	2.9	4.0	5.6	0.5	7.0	4.1	11.0	17.0	14.0	18.0				2.3	-	-	1.3	4.4	1.5
ිි නි	Exchangeable Mn++ ug/g		Ξ	\Diamond	24	5 Å	. Δ	38	\Diamond	16	\$				9	\$	\$	\$	13	6
<i>සි/</i> සිr	Exchangeable Al+++ ug/g		\$	\Diamond	09	5 A	. Δ	∞	\Diamond	\Diamond	Ş				89	59	13	\$	9	84
	ਤੁ∕gu ¶ nəslO		$\overline{\vee}$	3.5	7.8	7. T	√ ∨	5.9	2.8	3.5	$\overline{\vee}$				2.2	<1.0	<1.0	<1.0	6.7	2.3
	Skene K ug/g		85	06	158	240	114	788	351	416	217				177	86	138	181	471	336
	7 Total Nitrogen		80.0	<0.05	0.12	<0.05 0.05	<0.05	0.46	0.17	0.26	0.07				0.17	0.07	90.0	<0.05	0.38	0.07
% u	% nodra. Carbon %		1.62	0.55	1.71	0.50	0.25	6.12	2.07	4.45	0.93				4.07	1.65	1.1	89.0	4.47	1.31
	Total Soluble Salts		0.05	0.02	0.02	0.02	0.04	90.0	0.02	0.02	0.02								0.03	0.02
	Cl as NaCl %		<0.05	<0.05	<0.05	<0.05 0.05 0.05	<0.05	<0.05	<0.05	<0.05	<0.05				<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
хә	ph Buffer Capacity Ind	9	5	_	9	7 4	. –	8	7	9	3								9	5
/ater ion	EC dS/m		<0.05	<0.05	<0.05	<0.05	0.12	0.18	<0.05	90.0	0.05	0.05	<0.05	0.45	0.08	0.1	0.24	0.64	0.09	<0.05
1:5 Soil Water Suspension	PH CaCl ₂		5.2	5.9	4 ;	5.4	6.3	4.8	5.5	5.5	6.7								5	4.2
1:5 S	∴ S O ₂ H Hq		6.5	7.1	5.1	5.6	7.5	5.4	6.5	6.4	8.1	6.2	5.3	4.6	5.4	5.4	5.8	∞	5.9	5.3
	nozinoH		B2	B3	A1	A2 R3	B31	A1	B2	A1	B2	Α1	A2	В	Α1	A2	B21	B22	A11	A12
	Гарогатогу Митрег		940544	940545	940538	940539 940540	940541	940546	940547	940548	940549	N/A	N/A	N/A	911300	911301	911302	911303	940520	940521
	Site Number		6 S	S 9		y v	S 8	S11	S11	S12	S12	M22	M22	M22	M19	M19	M19	M19	S 1	S 1
	inU qsM		Qa1	Qal	Qap	Qap Oan	Qap	Opq	Opq	Qbp	Qbp	Τff	Τff	Τff	Tsf	Tsf	Tsf	Tsf	Dga	Dga

APPENDIX D. PHYSICAL LABORATORY RESULTS

Cation Exchange Capacity			9:	4.	4.	.3	7	9.9	6.3	14.3	2	9:	9::	6.0	4.	6.	.7
																_	
Exchangeable H+ meq/100g			2.2	7.5	10.	7.1	4.8	19.4	8.6	8.4	4.6	°.0	3.9	4.3	3.6	°.0>	1.3
Calcium:Magnesium Ratio			1.4	0.3	1.5	1.2	1.0	1.3	0.3	0.1	2.7	1.0	0.1	2.4	1.0	0.4	0.2
səseş	Total of Extractable Bases			6.6	7.1	5.2	3.4	7.2	3.1	5.9	2.6	9.0	18.7	9.9	8.9	2.3	8.4
	Ma+meq/100g	0.3	0.1	1.3	0.2	0.1	0.1	0.2	0.2	0.3	0.1	0.1	4.1	0.2	6.0	0.7	3.0
le Bases	K+ meq/100g	0.2	0.1	0.2	0.4	0.2	0.1	0.5	0.2	0.3	0.3	0.1	8.0	6.0	8.0	0.3	1.1
Extractable Bases	g001\psm ++gM	1.5	0.5	6.7	2.6	2.2	1.6	2.8	2.0	4.8	9.0	0.2	12.2	1.6	2.5	6.0	3.6
E	Ca ++ meq/100g	2.8	0.7	1.7	3.9	2.7	1.6	3.7	0.7	0.5	1.6	0.2	1.6	3.9	2.6	0.4	0.7
ිිත් සිරුසි සිරුසි ස	Exchangeable Mn++ ug/g			$^{\diamond}$	34	24	13	23	\Diamond	\Diamond	5	\$	\Diamond	10	8	$^{\diamond}$	\$
ੜ <i>/</i> ੜੇr	Exchangeable Al+++ ug/g			\Diamond	~	\$	\Diamond	54	101	\Diamond	∞	\$	\Diamond	\Diamond	\$	\$	\$
	g/gu 4 nəslO			$\overline{\vee}$	3.1	2.6	1.6	4.5	$\overline{\vee}$	$\overline{\vee}$	8.1	$\overline{\vee}$	$\overline{\vee}$	6.6	1.2	$\overline{\lor}$	$\overline{\vee}$
	Skene K ug/g			45	191	84	09	196	65	112	171	41	199	444	307	141	336
% nagortiV latoT			<0.05	<0.05	0.32	0.13	90.0	0.49	0.11	0.09	0.15	<0.05	<0.05	0.17	80.0	<0.05	<0.05
% u	% nodrs. Carbon %			0.24	4.81	2.44	1.61	7.21	1.52	1.01	2.92	0.54	0.46	3.23	1.81	0.39	0.44
	Total Soluble Salts			0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.09	0.04	0.10	0.05	0.20
	Cl as NaCl %		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	0.07	<0.05	0.14
хә	ph Buffer Capacity Ind	9	-	5	7	5	3	∞	9	9	3	-	2	3	2	-	-
'ater on	EC dS/m	<0.05	<0.05	<0.05	90.0	<0.05	<0.05	0.05	<0.05	<0.05	<0.05	<0.05	0.29	0.13	0.31	0.15	99.0
1:5 Soil Water Suspension	pH CaCl ₂	4.7	5.2	4.5	5	5	5	4.3	4.5	4.7	9.4	8.8	7.1	5.7	5.6	7	7.1
1:5 St	O ^Z H Hd	9	9.9	6.1	5.9	6.2	6.4	5.3	5.9	6.2	5.9	6.3	8.1	6.5	6.3	8.2	7.8
nozinoH		A1	A2	B2	Α1	B1	B21	Α1	B2	B3	Α1	A2	B2	A11	A12	A2	B2
Гарогаѓогу Литрег		940525	940526	940527	940522	940523	940524	940535	940536	940537	940528	940529	940530	940550	940551	940552	940553
Site Number		S 4	S 4	S 4	S 3	S 3	S 3	S 7	S 7	S 7	S 5	S 5	\$ 5	S13	S13	S13	S13
	tinU qsM			Dgf	Dgh	Dgh	Dgh	Osc	Osc	Osc	Osf	Osf	Osf	Osh	Osh	Osh	Osh