

MAP UNIT Quaternary basalt, hilly

SYMBOL Qbh

GENERAL DESCRIPTION

This map unit contains the sides and crests of volcanic cones in the northern and southern portions of the study area.

Soils are red gradational types with weakly developed textural duplex characteristics.*

Map Unit is 6.5 % study area Ref. Plate 2

PARENT MATERIAL		
Quaternary basalt (in situ)		
Depth to rock	100	cm
Rock outcrop	0	%
Surface stones	0	%
Landslip risk	Low	
Shrink/swell	Moderate-high	
potential		_
Northcote code &	Gn 3.12* -	
SCS Ext.	4/3/20	

LANDFORM	
Volcanic cones	
Slope-common	20 %
- range	15-30+ %
Flood risk	Nil
Profile drainage	Well drained
Seasonal	Nil
watertable	
Unified soil group	Α
	B CL

EROSION HAZARD

Moderate: despite the steep slopes, a well-drained profile reduces the erosion hazard.

NATIVE	Manna gum	LAND USE	Grazing
VEGETATION	_		_

MAP UNIT Quaternary basalt, hilly SYMBOL Qbh

PROFILE DESCRIPTION

0-20 cm

Dark reddish brown (2.5YR 3/3) clay loam; strong medium crumb structure; friable when moist; 2% of soil volume as stones of parent material to 10 cm diameter; pH 6;

Clear transition to:

20-100 cm

Dark brown (10YR 3/4) medium clay; moderate fine subangular blocky structure; friable when moist; 10% of soil volume as stones of parent material to 4 cm diameter; pH 6½;

Given way to decomposing parent material.

Capability of the land to support various activities

ACTIVITY	RATING	MAJOR LIMITING FEATURES OF THE LAND
Building foundations	Poor	Slope
Absorption fields	Poor	Slope; (pollution of groundwater?)
Secondary roads	Poor	Slope; batters slump
Gravel roads	Fair to poor	Slope; unified soil group; batters slump
Access tracks	Poor to very poor	Slope, unified soil group
Shallow excavations	Poor	Slope; depth to rock
Farm dams	Very poor	Slope; high percolation rate
Sewage lagoons	Very poor	Slope; high percolation rate
Intensive cultivation	Poor	Slope
Path & trails	Fair	Slope

Capability of the land to support subdivision

SUBDIVISION TYPE	RATING	MAJOR LIMITING ACTIVITIES
Urban (sewered)	Poor	All relevant activities
Bush Blocks (4 ha)	Poor	All relevant activities
Small Farmlets (4 ha)	Very poor	Farm dams: access tracks
Large Farmlets (16 ha)	Very poor	Farm dams: access tracks

Effect of subdivision on the town water supply

While residential development may lead to a higher pollution load in runoff water, any deleterious effects on town water supply are likely to relate to washing of surface material from gravel roads.