APPENDIX 3 - SPECIFIC METHODOLOGY

3.1 Map Unit Determination

Map units were delineated according to geology and slope category (McDonald et al 1984) using geological mapping, topographical mapping, aerial photography and field survey techniques.

3.2 Field Observations

Most field descriptions (refer table All) are based on definitions used in 'Australian soil and land survey' (McDonald et al 1984) or 'A factual key for the recognition of Australian soils' (Northcote 1979). The definition for soil horizon boundaries is listed below.

Check that all containers are full and will last overnight to allow soil to saturate and conductivity rate to equilibrate.

Next day, remove water container and fill each ring. Mark that point as zero for future measurements and record zero time. At appropriate time intervals, depending on rate of infiltration - 5 min, 15 min, 30 min, 60 min, record the drop in water level in mm on sheets provided. If water levels are getting low, fill rings to zero again straight after taking readings.

Boundaries

S	Sharp	< 5 mm
А	Abrupt	5-20 mm
С	Clear	20-50 mm
G	Gradual	50-100 mm
D	Diffuse	> 100 mm
+	Continuing	

Record measurements for 3 hours or until the rate of infiltration is constant.

Dig out each ring taking care not to disturb the soil contained within the ring. Up-end the ring and record the proportion of soil area that has been transmitting water for each ring and record if water movement has been evenly distributed or confined to root/worm holes or structural cracks. Note any other differences, i.e. rocks, sand, clay patches.

3.3 Field Tests

3.3.1 Saturated Hydraulic Conductivity

Site selection:

Because of the considerable time and effort that is required to obtain meaningful permeability (Ksat) values, it is imperative that sites are chosen carefully and chosen prior to the day of measurement. The sites should have nil, or at least, minimal disturbance.

Procedure:

Insert six infiltration rings so that each ring is approximately 100 mm into the main clay horizon - remove some topsoil if necessary. Use the mechanical vibrator and special plate to insert rings, otherwise use gentle tapping with a sledgehammer.

Rings need to be at least 2 metres apart and located at random. Relocate ring if obstacles such as stones or roots prevent an even downward movement of the ring into the soil.

Fill ring with water and set up reservoir tank so that water is added when the level drops below the outlet tube. Record the time and date on field sheets.

3.4 Laboratory Analysis

Samples collected for each soil horizon were air dried, ground using a mortar and pestle and sieved to 2 mm. Physical analyses and soil pH, Ec and C1% measurements were conducted at Keith Turnbull Research Institute and chemical analyses at the State Chemistry Laboratory. All results are expressed in terms of oven dry soil.

3.4.1 Physical Properties

i) Particle size analysis

Based on a method by Hutton (1956), silt and clay percentages are determined by plummet balance readings on a 2% suspension, and sand percentages are determined by hand decantation followed by sieving.

Coarse sand	2 - 0.2 mm
Fine sand	0.2 - 0.002 mm
Silt	0.02 - 0.002 mm
Clay	< 0.002 mm

Dispersion Based on the method by Emerson (1977) Modification:

E2.4 E3.4 E2.3 E3.3	Complete Major dispersion
E2.2 E3.2	Some dispersion
E2.1 E3.1	Minor dispersion

Atterberg Limits

Methods based on the Australian Standard AS 1289 3.4.2 Chemical Properties

Soil pH

1:5 soil-water suspension shaken for 1 hour and allowed to reach room temperature. Measured with a glass electrode and digital pH meter.

Electrical conductivity

Measurements on the above suspension using a dip-cell and direct reading meter.

Chloride ion %

Measurements on the above suspension using a silver nitrate titration.

Exchangeable Ca, Mg, Na, K

Gillman and Sumpter's method of extraction for acidic soils method no. 024 (State Chemistry Laboratory 1991) and Tuckers method for alkaline soils method no. 006 (State Chemistry Laboratory 1991). The extracts were analysed using Inductively Coupled Plasma atomic emission spectroscopy.

Exchangeable AI and MI

Extracted with 0.1 m KCl and concentrations determined by calorimetry and atomic absorption spectrophotometry respectively method no. 001 (State Chemistry Laboratory 1991).

Oxidizable Organic Carbon

Walldey and Black method no. 014 (State Chemistry Laboratory 1991).

Phosphorus

Olsen method, method no. 010 (State Chemistry Laboratory 1991).

Potassium

Skene method no. 011 (State Chemistry Laboratory 1991).

Total Nitrogen %

Method no. 007 (State Chemistry Laboratory 1991).

Exchangeable H

Method no. 005 (State Chemistry Laboratory 1991)

LOCATION REFERENCE	CLASSIFICATION		LANDFORM & LAND S	SURF	ACE		NATIVE VEGETATION
101 Described by	Map Classification		Landform Pattern		Land Surface		401 Growth form
	201 Pre-map unit	225 Erosion gully depth	301 Relief		319 Site disturbance		
102 Date				m.			402 Tallest stratum
	202 Final map unit	226 Aggradation	302 Modal slope		320 Microrelief		400.0
Map Sneet	202 Cite elevation		202 Delief /Medal alare		224 2 Minelief interval		403 Crown cover
TUS Scale		227 Flooding	303 Reliei /wodai siope		321-2 Milellel. Interval	riz	101 Structural form
104 Number	204 Geology	228 Inundation	304 Pattern type		mm r	mm	
Map Reference	201 0001099				323-4 Surface condition		405-7 Dominant species
105 Type	Land Use Within Unit	229 Salinity	Landform Element				····
	205 Land use	Soil Classification	305 Morphology type				
106 Easting / Latitude		230 Type observation			325 Regolith depth		
	206 Land use type		306 Element type			m.	
107 Northing / Longitude		231 Depth solum	00 7 0 1 1 1		Coarse Fragments		408-10 Major u/storey
	Water	222 Creat Sail Craup	307 Slope evaluation		326 Surface gravel		species
108 7000		232 Great Soli Group	208 Simple clope		227 Lithology		
100 20110	208 Rainfall distribution	233 Northcote s r t	Suo Simple Siope	%	327 Eltilology		411-3 Major berbs
Aerial Photographs	J F M	200 Northeote 3.1.1.	309 Upper slope	70	328 Surface stone		
109 Film number	A M Jn	234 Northcote PPF key	•••• •FF •· •·•F •	%			
	Jy A S		310 Mid-slope		329 Lithology		
110 Run number	0 N D			%			
			311 Lower slope		330 Surface boulder		
111 Frame number			0.40 0 1	%			
	209 Frost incidence		312 Slope category		331 Lithology		
112 Position east	210 Surface rupoff		212 Slope inclination		Substrate Material		
113 Position north	210 Surface furion		STS Slope inclination		Substrate Material		
mm	211 Site drainage		314 Slope length		332 Type observation		
Site Photographs			er i eleperengui	m.			
114 Type	212 Standing water		315 Slope width		333 Depth observation		
	mm.			m.		m.	
115 Roll number			316 Aspect		334 Confidence		
	Land Degradation			0			
116-7 Film number	213-24 Erosion		317-8 Geomorph. agent	t	335 Porosity		
	Type Degree State				226 Strongth		
10					SSO Strength		
					337 Lithology		

503	504-5	506	507	508	509	510	511	512	513
Horizon	Horizon depths upper - lower	Boundaries	Colour	Moisture state	V/C rating	Motttle abundance	Mottle size	Mottle contrast	Mottle colour
502	544	545	540	F47	540	540	500	504	500
		Toxturo grado	DI0 Toxture qualifier	Structure	Structure grade	Structure cize	Structure type	521 Eabric	Soil water status
10112011				compound	Structure grade	Structure size	Structure type	rablic	Soli water status
503	523	524	525	526	527	528-9	530	531	532
Horizon	Consistence	Pans cementation	Pans type	Pans continuity	Pans structure	Segregation abund. & depth	Segregation nature	CaCO ₃ test	Dispersion [lab test]
503	533	534	535	536	537	538	539	502	501
503 Horizon	533 Slaking	534 Coarse fragment	535 Coarse fragment	536 Coarse fragment	537 Coarse fragment	538 pH	539 Organic matter	502 Sample	501 Laboratory
503 Horizon	533 Slaking [lab test]	534 Coarse fragment abundance	535 Coarse fragment size	536 Coarse fragment shape	537 Coarse fragment Lithology	538 pH	539 Organic matter content	502 Sample [lab tests]	501 Laboratory number
503 Horizon	533 Slaking [lab test]	534 Coarse fragment abundance	535 Coarse fragment size	536 Coarse fragment shape	537 Coarse fragment Lithology	538 pH	539 Organic matter content	502 Sample [lab tests]	501 Laboratory number
503 Horizon	533 Slaking [lab test]	534 Coarse fragment abundance	535 Coarse fragment size	536 Coarse fragment shape	537 Coarse fragment Lithology	538 pH	539 Organic matter content	502 Sample [lab tests]	501 Laboratory number
503 Horizon	533 Slaking [lab test]	534 Coarse fragment abundance	535 Coarse fragment size	536 Coarse fragment shape	537 Coarse fragment Lithology	538 pH	539 Organic matter content	502 Sample [lab tests]	501 Laboratory number
503 Horizon	533 Slaking [lab test]	534 Coarse fragment abundance	535 Coarse fragment size	536 Coarse fragment shape	537 Coarse fragment Lithology	538 pH	539 Organic matter content	502 Sample [lab tests]	501 Laboratory number
503 Horizon	533 Slaking [lab test]	534 Coarse fragment abundance	535 Coarse fragment size	536 Coarse fragment shape	537 Coarse fragment Lithology	538 pH	539 Organic matter content	502 Sample [lab tests]	501 Laboratory number
503 Horizon	533 Slaking [lab test]	534 Coarse fragment abundance	535 Coarse fragment size	536 Coarse fragment shape	537 Coarse fragment Lithology	538 pH	539 Organic matter content	502 Sample [lab tests]	501 Laboratory number