PART V ACKNOWLEDGEMENTS, REFERENCES AND APPENDICES

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	.1
REFERENCES	.2
APPENDIX IA - ANALYTICAL DATA FOR SELECTED SOIL PROFILES	.4
APPENDIX IB - METHOD OF SOIL ANALYSIS	.6
APPENDIX IIA - COMMON NAMES AND BOTANICAL NAMES OF PLANTS REFERRED TO IN THE TEXT	.7
APPENDIX IIB - VEGETATION CLASSIFICATION FOR THE KIEWA CATCHMENT	.9
APPENDIX III - TABLE OF CONVERSION FACTORS1	10

ACKNOWLEDGEMENTS

The assistance of the many officers of the Soil Conservation Authority who were involved in the survey and in the preparation of the report is gratefully acknowledged.

Special reference must be made to Mr. J. N. Rowan for constructive criticism and encouragement, Mr. T. 1. Leslie who directed the analysis of the soil samples and advised on the interpretation of the data, Mr. J. Las Gourgues for preparation of the maps and diagrams, Mr. J. T. MePhee who prepared the report for publication, and Mrs. 0. Milsom who typed the numerous draughts of this report.

REFERENCES

ANDREWS, A. (1920): "The First Settlement in the Upper Murray, 1835-1845" (Ford: Sydney).

BEADLE, N. C. and COSTIN, A. B. (1952): Ecological classification and nomenclature. Proc. Linn, Soc. N.S.W. 77: 61-87.

BEAVIS, F. C. (1962): The geology of the Kiewa area. Proc. Roy. Soc. Vic. (N.S.) 75: 349-410.

BUTLER, B. E. (1958): Depositional Systems of the Riverine Plain in Relation to Soils. C.S.I.R.O. Aust. Soil Publ. No. 10.

BUTLER, B. E. (1959): Periodic Phenomena in Landscapes as a Basis for Soil Studies. C.S.I.R.O. Aust. Soil Publ. No. 14.

CARR, STELLA G. M. (1962): The role of shrubs in some plant communities of the Bogong High Plains. Proc. Roy. Soc. Vic. (N.S.) 75 : 301-310.

CARR, STELLA G. M. and TURNER, J. S. (1959): The ecology of the Bogong High Plains. Aust. J. Bot. 1: 12-33.

CENTRAL PLANNING AUTHORITY (1949): "Resources Survey, Preliminary Report, Upper Murray Region " (Govt. Printer Melbourne).

COMMONWEALTH BUREAU OF CENSUS AND STATISTICS (1967): Victorian Rural Statistics Season 1965-66 (Commonwealth Bureau of Census and Statistics: Melbourne).

COMMONWEALTH BUREAU OF METEOROLOGY (1956): "Climatic Averages Australia " (Director of Meteorology : Melbourne).

COSTIN, A. B. (1954): "A Study of the Ecosystems of the Monaro, Region of New South Wales". (Soil Cons. Service : Sydney).

COSTIN, A. B. (1957a): The high mountain vegetation of Australia. Aust. J. Bot. 5: 173-189.

COSTIN, A. B. (1957b): "High Mountain Catchments in Victoria in relation to Land Use" (Soil Conservation Authority : Melbourne).

COSTIN, A. B. (1962): Ecology of the High Plains. Proc. Roy. Soc. Vic. (N.S.) 75 : 327-337.

COSTIN, A. B. (1966): Management opportunities in Australian high mountain catchments. Int. Symp. Forest Hydrol.: Penn. St. Univ. 1965 : 565-577.

COSTIN, A. B., GAY, L. W., WIMBUSH, D. J. and KERR, D. (1961): Studies in Catchment Hydrology in the Australian Alps. III. Preliminary Snow Investigations. C.S.I.R.O. Aust. Div. Plant Ind. Tech. Pap. No. 15.

COSTIN, A. B. and WIMBUSH, D. J. (1961): Studies in Catchment Hydrology in the Australian Alps. IV. Interception by Trees of Rain, Cloud and Fog. C.S.I.R.O. Aust. Div. Plant Ind. Tech. Pap. No. 16.

COSTIN, A. B., WIMBUSH, D. J. and KERR, D. (1960): Studies in Catchment Hydrology in the Australian Alps. II. Surface Run-off and Soil Loss. C.S.I.R.O. Aust. Div. Plan Ind. Tech. Pap. No. 14.

COSTIN, A. B., WIMBUSH, D. J., KERR, D. and GAY, L. W. (1960): Studies in Catchment Hydrology in the Australian Alps. I. Trends in Soil and Vegetation. C.S.I.R.O. Aust. Div. Plant Ind. Tech. Pap. No. 13,

VAN DIJK, D. C. (1959): Soil Features in Relation to Erosional History in the Vicinity of Canberra. C.S.I.R.O. Aust. Soil Publ. No. 13.

VAN DIJK, D. C., RIDDLER, A. M. H. and ROWE, R. K. (1969): Criteria and problems in groundsurface correlations with reference to a regional correlation in South-eastern Australia. 9th Intern. Congr. Soil Science Trans. IV. Paper 14.

DOWNES, R. G. (1954): Cyclic salt as a dominant factor in the genesis of soils of south-eastern Australia. Aust. J. Agr. Res. 5 : 448-464.

FOLEY, 1. C. (1945): "Frost in the Australian Region" Comm. Met. Bur. Bull. No. 32 (Director of Meteorology : Melbourne).

GEIGER, R. (1965): "The Climate Near the Ground" Revised Ed. (Harvard Uni. Press: Cambridge, Mass.).

GEOLOGICAL SURVEY OF VICTORIA (1966): Tallangatta, 1:250,000 Geology Map.Provisional Ed. (Mines Dept.: Melbourne).

GEOLOGICAL SURVEY OF VICTORIA (1968): Wangaratta, 1:250,000 Geology Map.Provincial Ed. (Mines Dept.: Melbourne).

GIBBONS, F. R. and DOWNES, R. G. (1964): "A Study of the Land in South-western Victoria". T.C.3 (Soil Conservation Authority : Melbourne).

GROSE, R. J. (1961): Silvical characteristics and notes on the silviculture of alpine ash. *Eucalyptus delegatensis*, R. T. Baker. Second F.A.O. World Eucalyptus Conference, Sao Paulo, Brazil.

HALDANE, A. D. (1956): Determination of free iron oxide in soil. Soil Sci. 82: 483.

HUTTON, T. T. (1956): A method of particle size analysis of soils. C.S.I.R.O. Aust. Division of Soils, Divn. Rept. 11/55.

LEEPER, G. W. (1950): Thornthwaite's climatic factor. J. Aust. Inst. Agric. Sci. 16: 2-6.

MANLEY, G. (1945): The effective rate of altitudinal change in temperate Atlantic climates. Geog. Rev.

METSON, A. J. (1956): Methods of Chemical Analysis of Soil Survey Samples. New Zealand D.S.I.R. Soil Bureau Bulletin No. 12.

MUNSELL COLOUR COMPANY INC. (1954): Munsell Soil Colour Charts. (U.S.A.)

NORTHCOTE, K. H. (1960): A Factual Key for the Recognition of Australian Soils. C.S.I.R.O. Aust. Division Soils Divn. Rept. 4/60.

PIPER, C. S. (1942): "Soil and Plant Analysis". (University of Adelaide : Adelaide).

ROWE, R. K. (1967): "A Study of the Land in the Victorian Catchment to Lake Hume" T.C,5 (Soil Conservation Authority : Melbourne).

ROWE, R. K. (1968): Rare bog community at Tawonga. Vict. Nat. 85 (5): 123-4.

ROWE, R. K. (1970): "A Study of the Land in the Mount Buffalo National Park" T.C.6 (Soil Conservation Authority: Melbourne).

STATE RIVERS AND WATER SUPPLY COMMISSION (1964): "Victorian River Gaugings to 1960". (S. R. & W. S. C.: Melbourne).

THORNTHWAITE, C. W. (1948): An approach toward a rational classification of climate. Geog. Rev. 38: 85-94.

TRUMBLE H. C. (1939): Climatic factors in relation to the agricultural regions of South Australia. Trans. Roy. Soc. S. Aust. 63 : 36-43.

TUCKER, B. M. (1954): The determination of exchangeable calcium and magnesium in carbonate soils. C.S.I.R.O. Aust. Division of Soils, Divn. Rept. 6/54.

TWIDALE, C. R. (1968): "Geomorphology". (Thomas Nelson : Melbourne).

APPENDIX IA - ANALYTICAL DATA FOR SELECTED SOIL PROFILES

Particle Size							Şize						IICI anteret			Exchangeable Cations.									
Soil Group Profile No.	Hori-	Depth	Field			Analy	515		рH	CI-	Org.	Total	HCI e	xtract.	Free		m	. equiv.	%			%	of C.E	.C.	
Location.	Luii	Sample.	Texture.	Gravel	Coarse	Fine	Silt	Clay			C	N	(Total) P	(Total) K	Fe ₂ O ₃	Ca++	Mg ⁺⁺	к+	Na ⁺	Cation exch. cap.	Ca	Mg	к	Na	н
		in.		%	%	%	%	%		0/	0/	0/	0/	0/	0/										
Undifferentiated sandy loam 235 Glen Creek	A1 A2 A3 A4 C	0- 3 3- 6 6-15 15-30 30-36 36-42 42-48 48-51 51-60	gr. COSL gr. COSL gr. COSL gr. COSL gr. COSL gr. COSL gr. COSL gr. COSL	22 27 34 21 31 47 42 39 30	1.e. 34 49 57 68 	1.e. 33 28 24 17 	1.e. 17 15 11 8 	1.e. 13 8 8 6 	6.2 6.3 6.7 6.8 6.8 6.8 6.7 6.8 6.8	% 0.007 0.004 0.003 0.003 0.003 0.002 0.003 0.002 0.002 0.002	70 2.8 0.7 0.2 	70 0.38 0.062 0.027 	70 0.032 0.007 0.007 0.012 	0.128 0.086 0.094 0.136	70 1.6 1.1 0.9 1.2 1.4 	8·2 1·8 1·6 2·0 	1.8 0.3 0.3 0.6 	0.5 0.2 0.2 0.2 	<0.05 <0.05 <0.05 <0.05 	15.5 3.1 2.8 14.9 	53 60 60 13 	12 10 10 4 	3 .5 5 1 	<1 <1 <1 <1 	32 25 25 25 82
Undifferentiated sandy loam 358 Tawonga	A1 A2 A3	3- 6 14-18 32-39	FSL LFS LS	tr. tr. 1	15 29 67	61 57 25	12 8 4	8 4 2	4·9 5·1 5·1	0·029 0·020 0·016	2.6 1.2 0.5	0·16 0·077 0·027				4.8 3.1 1.4	0.8 0.6 0.3	0·3 0·2 0·1	0.05 0.04 0.02	15·4 9·9 5·6	31 31 25	5 6 5	2 2 2	<1 <1 <1	62 61 67
Undifferentiated stony loam 344 Leneva hills	A1 A2	0- 3 3- 8 8-12 12-18	COS L COS L COS L	2 6 7 10	41 46 44 	36 36 35	13 12 13 	8 6 9	$5 \cdot 4 \\ 5 \cdot 1 \\ 5 \cdot 2 \\ 5 \cdot 2 \\ 5 \cdot 2$	0.006 0.001 0.001 0.006	1.7 0.4 0.3	0.13 0.033 0.030	0.024 0.013 0.014 0.017	0.53 0.43 0.56 0.76	1.0 0.8 0.9	3·4 0·6 0·8 0·7	$ \begin{array}{r} 1 \cdot 2 \\ 0 \cdot 5 \\ 0 \cdot 4 \\ 0 \cdot 5 \end{array} $	0·7 0·3 0·3 0·2	<0.05 <0.05 <0.05 <0.05 <0.05	$ \begin{array}{r} 10 \cdot 1 \\ 4 \cdot 6 \\ 4 \cdot 6 \\ 6 \cdot 8 \end{array} $	34 13 17 10	12 11 9 7	7 7 7 3	<1 <1 <1 <1	47 69 67 80
Undifferentiated stony loam 345 Leneva hills	A1 A2	$\begin{array}{r} 0-2\\ 2-8\\ 8-15rac{1}{2}\end{array}$	FSL FSL FSL	14 19 20	16 16	51 59	15 14 	11 10	4·7 4·7 5·0	0.006 0.010 0.003	3·4 0·9	0·22 0·064	0.031 0.046	0·74 0·57	1·3 1·4	1·3 0·2	0.5 0.4	0·2 0·2	<0.05 <0.05	15·9 7·2	8 3 	3 6 	1 3	<1 <1 	88 88
Brown loam on alluvium 237 Mongan's Bridge	A1 A2 C	0- 3 3- 6 6-12 12-21 21-27 27-30	L FSL FSL LS S		8 17 60 77	46 53 31 16	26 20 6 4	16 8 3 3	5.7 5.8 5.9 5.7 5.7 5.7	$\begin{array}{c} 0 \cdot 003 \\ 0 \cdot 007 \\ 0 \cdot 005 \\ 0 \cdot 004 \\ 0 \cdot 002 \\ 0 \cdot 002 \end{array}$	3.7 2.5 1.1 	0·31 0·20 0·090 	0.068 0.043 0.033	0·47 0·50 0·45	1.7 1.6 1.4 0.9	3·2 4·1 1·6	0·9 0·2 0·3	0.5 0.3 0.1	<0.05 <0.05 <0.05 <0.05	12·2 12·0 3·5	26 34 46	7 2 9	4 ·· 3 ··	<1 <1 <1 <1	63 61 42
Brown loam on alluvium 238 Mt. Beauty	A1 A2 A3 A4/C	$\begin{array}{r} 0-3\frac{1}{2}\\ 3\frac{1}{2}-6\\ 6-12\\ 12-24\\ 24-30 \end{array}$	FSL FSL FSL FSL FSL	tr. 2 tr. tr. 10	38 37 34	33 36 42	13 13 10	14 13 12	5.8 5.8 6.0 5.9 5.7	$\begin{array}{c} 0 \cdot 004 \\ 0 \cdot 003 \\ 0 \cdot 002 \\ 0 \cdot 002 \\ 0 \cdot 002 \\ 0 \cdot 002 \end{array}$	2·1 0·7 0·4	0.18 0.065 0.045	0.050 0.050 0.031	0.52 0.49 0.49	1.5 1.7 1.7 1.6	5·3 2·4 1·1	0.8 0.8 0.6	0.7 0.3 0.3	<0.05 <0.05 <0.05	14·0 8·5 6·1	38 28 18	6 9 10	5 4 3	<1 <1 <1	51 59 69
Brown loam on alluvium 359 Tawonga	A1 A2 A3	2- 4 6-10 18-20	SiL FS SiL FSL	tr. 1 1	15 19 28	48 46 46	18 23 19	14 8 5	$5 \cdot 1 \\ 5 \cdot 3 \\ 5 \cdot 1 \\ 5 \cdot 1$	0.011 0.011 0.015	$4 \cdot 3 \\ 2 \cdot 8 \\ 1 \cdot 4$	0·36 0·22 0·10				8·2 7·9 2·2	1·3 1·0 0·4	$0.4 \\ 0.2 \\ 0.2 \\ 0.2$	0·10 0·10 0·09	$ \begin{array}{r} 19 \cdot 9 \\ 18 \cdot 0 \\ 10 \cdot 3 \end{array} $	41 44 21	7 6 4	2 1 2	1 1 1	49 48 72
Shallow organic loam 231 Mt. Cope	A1 A2 A3/C C	0- 3 6- 9 9-15 15-24 26-30	SL SL SL SL SL	2 tr. tr. 9 13	38 40 46	16 16 23 	16 13 13	24 26 16	4.8 4.7 4.8 4.8 5.0	0.005 0.004 0.003 0.002 0.002	$7 \cdot 0$ $5 \cdot 1$ $2 \cdot 7$ $1 \cdot 3$ $0 \cdot 5$	0.50 0.39 0.20 0.10 0.045	0.058 0.051 0.051	0.63 0.77 1.12	1.9 2.2 1.7	2·0 0·2 0·3	1 · 1 1 · 2 <0 · 05 	0.7 0.3 0.3	<0.05 <0.05 <0.05 	23·9 16·2 13·0	8 1 2 	5 <1 	3 2 2	<1 <1 <1 <1	84 90 96
Deep organic loam 232 Falls Creek Road	A1 A2 A3/C C	0- 1 1- 6 6-12 12-18 18-30 30-40 40-60	SL SL S SiL S SiL S SiL SL SL	5 3 2 2 tr. tr. 2	41 40 38 45	22 18 20 21	21 25 24 14	 9 14 15 12	5.2 5.6 5.6 5.5 5.4 5.3 5.2	$\begin{array}{c} 0 \cdot 009 \\ 0 \cdot 012 \\ 0 \cdot 004 \\ 0 \cdot 004 \\ 0 \cdot 002 \\ 0 \cdot 002 \\ 0 \cdot 002 \\ 0 \cdot 001 \end{array}$	$\begin{array}{c} 12 \cdot 5 \\ 10 \cdot 0 \\ 7 \cdot 0 \\ 3 \cdot 5 \\ 1 \cdot 8 \\ 0 \cdot 8 \\ \dots \end{array}$	0.69 0.67 0.45 0.22 0.12 0.048	0.088 0.085 0.053 0.044 0.034	0·34 0·30 0·35 0·39 0·44	2·2 2·0 2·4 2·2	7.6 5.1 0.4 0.4 0.2	$ \begin{array}{c} 1 \cdot 2 \\ < 0 \cdot 05 \\ $	0.9 0.6 0.2 0.3 0.3	$ \begin{array}{c} < 0 \cdot 05 \\ < 0 \cdot 05 \\ \hline \\ < 0 \cdot 05 \\ < 0 \cdot 05 \\ \hline \\ < 0 \cdot 05 \\ \hline \\ < 0 \cdot 05 \\ \hline \end{array} $	39.5 27.9 11.9 9.2 8.5	19 18 3 4 2	3 < 1 3 1 1	2 2 3 4	<1 <1 <1 <1 <1 <1 	76 80 92 92 92 93
Reddish gradational soil on alluvium 227 Mongan's Bridge	A1 B1	0- 3 3- 6 6-12 12-18 18-28	FSL SCL SCL SCL SCL SCL	tr. tr. tr. tr. tr.	30 31 27 26	29 28 27 24	21 19 17 21	18 23 28 27	5.5 5.6 5.8 5.9 5.9	$\begin{array}{c} 0 \cdot 005 \\ 0 \cdot 003 \end{array}$	2·3 0·8 0·5	0·21 0·078 0·048	0.051 0.047 0.068	0·39 0·46 0·54	1.8 1.9 2.3 2.4 2.4	4.0 3.3 2.8	0·7 0·8 1·2	0.6 0.3 0.4	$\begin{array}{c} <0\cdot05\\ <\dot{0}\cdot05\\ <\dot{0}\cdot05\\ <\dot{0}\cdot05\end{array}$	14·1 9·9 9·5	28 33 29	5 8 13	4 3 4	<1 <i <i< td=""><td>63 56 54</td></i<></i 	63 56 54
Reddish gradational soil on alluvium 239 House Creek	A1 A2 B1 C	0- 3 3- 6 6-12 12-24 24-26 36-48 48-54	FSL SiL CL CL FSCL FSL	tr. tr. tr. tr. tr. tr. tr. tr.	29 15 26 	40 42 38 40 	14 21 21 14 	15 21 26 	$5 \cdot 2$ $5 \cdot 2$ $5 \cdot 6$ $6 \cdot 0$ $5 \cdot 8$ $5 \cdot 7$ $5 \cdot 8$	$\begin{array}{c} 0 \cdot 004 \\ 0 \cdot 003 \\ 0 \cdot 004 \\ 0 \cdot 004 \\ 0 \cdot 004 \\ 0 \cdot 003 \\ 0 \cdot 003 \end{array}$	2.5 1.7 1.2 0.8 	0·21 0·16 0·11 0·063 	0.042 0.050 0.038 0.021	0.42 0.56 0.61 0.49	1·4 2·0 2·3 2·9 2·7	$ \begin{array}{r} 4 \cdot 7 \\ 5 \cdot 4 \\ 5 \cdot 1 \\ 2 \cdot 2 \\ \dots \end{array} $	$ \begin{array}{c} 1 \cdot 1 \\ 1 \cdot 0 \\ 2 \cdot 4 \\ 2 \cdot 0 \\ \dots \end{array} $	0·3 0·3 0·3 0·3	<0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	12.7 16.3 14.8 12.1 	37 33 35 18 	9 6 16 17	2 2 2 2	<1 <1 <1 :: <1 : : : : :	52 59 47 63
Reddish gradational soil on alluvium 351 Little River	A1 A2 A3 B1 B2/C	0- 4 4- 8 8-14 18-22 30-34	SL SL SL SCL SCL	tr. tr. tr. tr. 7	54 50 51 39	24 28 25 29	11 13 9 7	11 9 14 24 	$5 \cdot 6$ $6 \cdot 0$ $6 \cdot 0$ $6 \cdot 2$ $6 \cdot 4$	$\begin{array}{c} 0 \cdot 003 \\ 0 \cdot 002 \end{array}$	1.5 0.7 0.3	0·14 0·069 0·042	0.038 0.033 0.037 0.055	0·35 0·36 0·41 0·52	$1 \cdot 4$ $1 \cdot 4$ $1 \cdot 8$ $2 \cdot 0$ $2 \cdot 4$	2.6 2.6 2.5 3.3	0·9 0·5 0·6 1·0	$0 \cdot 2 \\ 0 \cdot 2 \\ 0 \cdot 2 \\ 0 \cdot 2 \\ 0 \cdot 2 \\ \cdots$	<0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	$7 \cdot 3$ $5 \cdot 8$ $4 \cdot 6$ $10 \cdot 5$ 	36 45 54 31	12 9 13 10	3 3 4 2	<1 <1 <1 <1 <1 	49 43 29 57
Yellowish-brown gradational soil on alluvium 349 Little River	A1 A2 B1 B2/C	0- 4 4- 8 8-12 12-18 18-24 36-40	FS SiL SiL CL CL CL FSL		6 4 1 5	44 46 52 62	29 26 18 20	21 24 27 15	$5 \cdot 7$ $5 \cdot 9$ $6 \cdot 0$ $6 \cdot 2$ $6 \cdot 3$ $6 \cdot 8$	$\begin{array}{c} 0\cdot 006 \\ 0\cdot 009 \\ 0\cdot 019 \\ 0\cdot 030 \\ 0\cdot 014 \\ 0\cdot 010 \end{array}$	$2 \cdot 4$ $1 \cdot 1$ $0 \cdot 5$ $0 \cdot 3$ $0 \cdot 2$	0·24 0·11 0·053 0·046 0·033 0·011	0.070 0.073 0.080 0.086	0.60 0.59 0.58 0.57	1.5 1.5 1.8 2.2	9·2 7·7 6·3 6·5	1.8 1.5 1.8 2.7	0.7 0.5 0.4 0.5	<0.05 <0.05 <0.05 0.1 	$ \begin{array}{c} 12 \cdot 2 \\ 14 \cdot 4 \\ 12 \cdot 3 \\ 11 \cdot 6 \\ $	75 53 51 56	15 10 15 23 	6 3 4 	<1 <1 <1 1 	4 34 31 16
Friable reddish gradational soil 228 Redbank Road	A1 A2 A3/B1 B1	$\begin{array}{r} 0-2\frac{1}{2}\\ 3-6\\ 6-15\\ 15-24\\ 24-52 \end{array}$	FSL SCL SCL C C	tr. tr. 3 4 3	26 22 20 19	39 36 27 28	14 12 9 8	16 29 44 44	5.6 5.6 5.7 5.5 5.4	0.006 0.003 0.003 0.002 0.002	3·3 0·9 0·6 	0·19 0·063 0·047	0.029 0.020 0.025 0.022	0·30 0·38 0·50 0·52	$ \begin{array}{r} 1 \cdot 2 \\ 1 \cdot 3 \\ 2 \cdot 4 \\ 3 \cdot 9 \\ 4 \cdot 3 \end{array} $	5.7 3.3 3.1 1.3	0.8 1.3 1.5 1.4	0.7 0.6 0.8 0.9	<0.05 <0.05 <0.05 <0.05 <0.05	16.9 10.7 13.2 12.2	35 31 23 11	5 12 11 12	4 6 8	<1 <1 <1 <1	57 51 60 69

For field texture, C = Clay, COS = coarse sand, FS - fine sand, gr. = gravely, L = loam, Si = silt. For gravel, tr. = trace = <1%, - = none present. Throughout, ... indicates that no determination was made.

1073/72 .- To face page 148.

					Pa	ticle S	Size						HCL	extract.	Exchangeabl						le Cations.						
Soil Group Profile No.	Hori-	Depth	Field Texture.						pH	Cl-	Org.	Total			Free		m.	equiv. 9	%.			% o	f C.E.	.C.			
Location.		Sample.		Gravel	Coarse Sand	Fine Sand	Silt	Clay				N	(Total) P	(Total) (Total) P K	Fe ₂ O ₃	Ca ⁺⁺	Mg ⁺⁺	к+	Na ⁺	Cation exch. cap.	Ca	Mg	к	Na	н		
		in.		%	% f.e.	% f.e.	% f.e.	% f.e.		0/0	%	%	%	%	%										-		
Friable reddish gradational soil 343 Nine-mile Creek	A1 A2 B1 B2	0- 3 3- 8 8-12 12-24 24-36 36-48	SiL SiL CL CL C C	6 3 5 8 11 11	12 10 11 	24 24 29 27	44 43 27 22 	13 18 32 	5.3 5.2 5.3 5.3 4.9 4.8	0.005 0.003 0.002 0.002 0.017 0.019	2.8 1.1 0.7 0.3	0.16 0.080 0.061 0.040	$0.052 \\ 0.037 \\ 0.035 \\ 0.031 \\$	0·38 0·32 0·40 0·42	2·8 3·1 3·6 4·0 4·4	5·3 2·7 2·2 2·0	1.5 0.8 0.6	0.6 0.6 0.6 	<0.05 <0.05 <0.05 	$22 \cdot 4$ 14 \cdot 7 13 \cdot 4 12 \cdot 4	24 18 16 	7 5 4 7	3 4 4 6	<1 <1 <1 :i	66 73 76 71		
Friable reddish gradational soil 353 Dederang	A1 A2 B1 B2	0- 3 3- 8 8-15 36-40	L CL CL C	4 10					5·2 4·9 5·2 5·6	0.017 0.015 0.018 0.011	4.0 2.0 	0·35 0·15 	0.023	0.41		$ \begin{array}{r} 6.5 \\ 4.0 \\ 5.7 \\ 6.2 \end{array} $	1 · 4 0 · 8 1 · 8 2 · 5	$ \begin{array}{r} 1 \cdot 6 \\ 0 \cdot 8 \\ 1 \cdot 4 \\ 1 \cdot 1 \end{array} $	$0.1 < 0.05 \\ 0.1 \\ 0.1 \\ 0.1$	18.6 14.3 15.7 15.3	35 28 36 41	8 6 11 16	9 6 9 7	$ \frac{1}{<1} \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	47 60 43 35		
Hard reddish gradational	AI	0-3	L	13	11	30	33	20	5.2	0.004	4.3	0.20	0.026	0.26	2.6	5.9	6.6	0.9	<0.05	29.9	20	22	3	<1	55		
342 Stanley	B1 B2	8-14 14-24 24-36 36-48 48-60 60-72	0000000	4 9 13 13 6 10	6 8 11	24 26 24 	23 19 18	43 47 45	5.0 5.3 5.3 5.3 5.3 5.3	$ \begin{array}{c} 0.003 \\ 0.003 \\ 0.003 \\ 0.002 \\ 0.002 \\ 0.002 \\ 0.004 \\ \end{array} $	1·1 0·5	0.12 0.073 0.047	0.021 0.024 0.025 0.022	0.27 0.27 0.31 0.30	3.1 4.1 4.7 5.2 5.1 5.0 5.1	1.0 0.4 0.4	0.7 0.7 0.4 0.4	0.4 0.5 0.5 0.2	<0.05 <0.05 0.2 	19·1 14·5 11·1	9 5 3 4 	3 4 ·· 3 ·· 4 ··	2 3 3 2	<1 <1 1 	86 88 90 89 		
Friable brownish grada- tional soil 229 Mountain Creek	A1 A2 B1 B2 C	0- 3 3- 6 6-10 12-18 18-36 36-54 54-66	L FSL SCL SCL SCL SCL gr. SL	12 7 6 9 9 9 22	28 25 25 31	28 30 30 23	21 25 15 22	17 16 29 17	$5 \cdot 3$ $5 \cdot 4$ $5 \cdot 3$ $5 \cdot 2$ $5 \cdot 2$ $5 \cdot 2$ $5 \cdot 2$ $5 \cdot 6$ $5 \cdot 1$	$\begin{array}{c} 0 \cdot 010 \\ 0 \cdot 003 \\ 0 \cdot 003 \\ 0 \cdot 003 \\ 0 \cdot 002 \\ 0 \cdot 004 \\ 0 \cdot 004 \end{array}$	6·9 2·7 1·4 0·7 0·3	0·36 0·17 0·096 0·060 0·038	0.037 0.025 0.018 0.015	$ \begin{array}{c} 0.39 \\ 0.38 \\ 0.39 \\ 0.23 \end{array} $	2.7 3.1 3.3 3.4 4.1 	12·4 1·8 0·5 0·6	1.8 0.5 0.5 0.5	1·1 0·6 0·6 0·4	$ \begin{array}{c} < 0 \cdot 05 \\ < 0 \cdot 05 \end{array} $	$32 \cdot 2$ $13 \cdot 6$ $10 \cdot 2$ $7 \cdot 3$	39 13 5 8	6 4 5 7	3 4 6 5	<1 <1 <1 <1 <1	52 79 84 80		
Friable brownish gradational soil 230 Trapper's Gap	A1 A2 B1 B2 B3/C C	0- 3 3- 6 6-12 12-24 24-36 36-48	L FSL FSCL FSL FSL FSL	9 5 7 14 16 9	16 13 14 13	42 53 55 65	18 19 13 10	18 14 17 11	$4 \cdot 6 \\ 5 \cdot 0 \\ 5 \cdot 1 $	$\begin{array}{c} 0 \cdot 007 \\ 0 \cdot 003 \\ 0 \cdot 002 \end{array}$	8.8 3.3 1.3 0.8 0.4	0·39 0·17 0·070 0·046 0·028	$0.029 \\ 0.021 \\ 0.012 \\ 0.014$	0.41 0.38 0.47 0.76	2·3 2·6 3·0 2·7 1·9	$ \begin{array}{c} 1 \cdot 8 \\ 0 \cdot 1 \\ 0 \cdot 2 \\ 0 \cdot 1 \\ 0 \cdot 1 \end{array} $	<0.05 0.2 0.2 0.2	$ \begin{array}{c} 0.8 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.2 \end{array} $		31.6 19.8 11.6 9.1	0.5 2 1	<1 1 2 1	3 1·5 3 2	<1 <1 <1 <1 <1	91 97 93 96		
Friable brownish gradational soil 233 Big Hill	A1 A2 B1	0- 3 3- 6 6-12 12-27 27-40	COSL COSL COSL COSCL COSL	11 4 7 16 4	38 36 40 44	21 22 24 23	21 21 15 15	16 18 22 18	5·2 5·2 5·3 5·4 5·5	0.006 0.005 0.003 0.002 0.002	4.7 3.1 1.6 0.5	0.22 0.15 0.079 0.033	0.022 0.016 0.017	0·47 0·49 0·62	2.6 3.0 3.1 2.8 2.1	1.8 0.3 1.6	0.6 0.4 0.9	0.6 0.6 0.6	<0.05 <0.05 <0.05	16.6 10.0 11.2	11 3 14	4 4 8 	4 5 	<1 <1 <1 <1	81 87 73		
Friable brownish gradational soil 234 West Kiewa fire track	A1 A2 B1 B2	0- 3 3- 6 8-12 12-18 22-28 34-40	SL SL SCL SCL SCL SL	tr. 3 3 tr. tr. 3	41 41 35 44	22 23 23 23 33	27 24 19 	6 4 18 9	6.0 6.0 5.8 5.8 5.5 5.5 5.6	0.006 0.005 0.003 0.003 0.002 0.002	4·1 3·6 1·6 0·8	0·22 0·20 0·10 0·062	0.022 0.021 0.015 0.013	0.25 0.23 0.24 0.42	2.5 2.5 2.3 2.5 1.7	5.8 1.0 0.2 0.7	1.0 0.6 0.5	$ \begin{array}{c} 1 \cdot 0 \\ 0 \cdot 6 \\ 0 \cdot 5 \\ 0 \cdot 6 \end{array} $	<0.05 < 0.05 < 0.05 <0.05 < 0.05 <0.05	$ \begin{array}{r} 18.0 \\ 13.9 \\ 8.2 \\ 6.2 \end{array} $	32 7 2 11	6 4 6 5	6 4 6 	<1 <1 <1 :: <1 :1	56 85 86 74		
Reddish duplex soil with acid subsoil 236 Tawonga	A1 A2 B1 B2 B3	0- 2 2- 4 4-10 10-16 16-24 24-36 36-48 48-60	FSL FSL CL C C C C C C C	tr. tr. tr. tr. tr. tr. 4	21 21 20 16 18	42 42 38 27 27	19 22 17 12 12 12	16 16 24 44 	$5 \cdot 3 5 \cdot 5 5 \cdot 7 6 \cdot 2 6 \cdot 1 6 \cdot 0 5 \cdot 5 5 \cdot 4 $	$\begin{array}{c} 0.003\\ 0.004\\ 0.003\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.003\\ \end{array}$	3.5 1.7 0.3 	0·27 0·13 0·053	0.027 0.016 0.015 0.017	0·30 0·27 0·35 0·51	$1 \cdot 3$ $1 \cdot 4$ $1 \cdot 9$ $4 \cdot 2$ 	8·3 3·7 2·3 2·0	1.0 1.0 0.4 0.4	1.0 1.0 0.6 0.4	$ \begin{array}{c} <0.05 \\ <0.05 \\ 0.1 \\ <0.05 \\ \\ \\ \end{array} $	$\begin{array}{c} 20 \cdot 2 \\ 10 \cdot 2 \\ 7 \cdot 1 \\ 7 \cdot 2 \\ \cdots \end{array}$	41 36 32 28 	5 10 6 6	5 10 8 6	<1 <1 1 : 1 : 1 : :	49 44 53 60 		
Reddish duplex soil with acid subsoil 341 Mitta Junction	A1 A2 B1 B2 B3/C	0- 2 2- 4 4- 8 8-12 12-24 24-30 30-44 44-48	FSL FSL C C C C C SCL	tr. tr. 	25 27 20 24 26	49 46 27 21 37	10 13 7 8 14	13 14 44 46 23	5.5 5.7 6.0 6.2 6.2 6.3 6.2 6.2 6.2 6.2	$\begin{array}{c} 0\cdot 002\\ 0\cdot 002\\ 0\cdot 002\\ 0\cdot 002\\ 0\cdot 003\\ 0\cdot 003\\ 0\cdot 003\\ 0\cdot 004\\ 0\cdot 005\end{array}$	1.5 0.9 0.6 0.4 	0·12 0·072 0·049 0·049 	0.019 0.014 0.018 0.016	0·21 0·17 0·45 0·47	1.5 1.5 1.7 3.6 3.9	$ \begin{array}{c} 2 \cdot 1 \\ 2 \cdot 3 \\ 3 \cdot 9 \\ 2 \cdot 5 \\ \dots \\ \dots \\ $	0.7 0.9 3.3 5.8	0.5 0.3 0.8 0.4 	<0.05 <0.05 0.1 0.3 	7 · 1 5 · 8 12 · 3 10 · 9 	29 40 32 23	10 15 37 53	7 5 7 4 	<1 <1 1 3 	54 40 23 17		
Reddish duplex soil with acid subsoil 354 North of Dederang	A1 A2 B1 B2	$\begin{array}{r} 0-1\frac{1}{2}\\ 1\frac{1}{2}-10\\ 15-20\\ 25-30 \end{array}$	COS L COS CL C C			· · · · ·	 		 5·3 5·1 4·8	0.013 0.008 0.019	0·3	0.027	0.022	0.73		1 · 2 1 · 8 1 · 1	0·5 4·1 6·4	0·2 0·6 0·4	<0.05 0.1 0.1	3·9 15·3 17·4	31 12 6	13 27 37	 5 4 2	 <1 1 1	51 56 54		
Yellowish duplex soil with acid to neutral subsoil 350 Bandiana	A1 A2 B1 B2	0- 3 3- 9 9-13 13-24 24-36 36-48	FSL SL C C C C	tr. 6 9 tr. tr. tr. tr.	27 30 31 18 19	44 46 43 25 30	16 16 13 8 9	11 7 12 49 42	$5 \cdot 0$ $5 \cdot 5$ $6 \cdot 0$ $5 \cdot 3$ $5 \cdot 5$ $6 \cdot 1$	$\begin{array}{c} 0\cdot 002 \\ 0\cdot 003 \\ 0\cdot 003 \\ 0\cdot 005 \\ 0\cdot 004 \\ 0\cdot 005 \end{array}$	2.6 0.3 0.2	0·20 0·031 0·022	0.018 0.009 0.008 0.016	0.12 0.082 0.10 0.47	$0.7 \\ 0.6 \\ 1.5 \\ 2.3 \\ $	3·1 0·8 1·0 1·6	$ \begin{array}{c} 0.6 \\ < 0.05 \\ 0.3 \\ 4.0 \\ \dots \\ \dots \end{array} $	$ \begin{array}{c} 0 \cdot 3 \\ 0 \cdot 1 \\ 0 \cdot 1 \\ 0 \cdot 3 \\ \dots \\ \dots \end{array} $	<0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	10.8 2.9 6.8 10.5	29 28 15 15 	6 1 4 38 	3 3 1 3 	<1 <1 <1 <1 <1 	62 68 80 44 		
Yellowish duplex soil with alkaline subsoil 340 Dederang	A1 A2 B1 B2	0- 3 3- 9 9-15 15-24 24-30 30-40 40-50	SL SC SC SC SC SC SC	tr. tr. tr. 7 7 tr. 4	41 46 30 36 38	27 25 17 18 22	18 19 12 12 9	12 10 40 33 29	5.6 5.4 5.8 6.8 8.4 8.8 8.8	$\begin{array}{c} 0\cdot 003 \\ 0\cdot 002 \\ 0\cdot 002 \\ 0\cdot 003 \\ 0\cdot 007 \\ 0\cdot 006 \\ 0\cdot 004 \end{array}$	1.6 0.5 0.4 	0.13 0.050 0.026 	0.019 0.013	0·14 0·14 	$ \begin{array}{c} 1 \cdot 6 \\ 1 \cdot 5 \\ 4 \cdot 0 \\ \vdots \\ 2 \cdot 6 \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \end{array} $	$ \begin{array}{c} 1 \cdot 6 \\ 0 \cdot 9 \\ 2 \cdot 0 \\ 2 \cdot 9 \\ \dots \\ $	0.6 0.3 3.3 8.2 	0·4 0·1 0·2 0·2 	$\begin{array}{c} < 0 \cdot 05 \\ < 0 \cdot 05 \\ 0 \cdot 2 \\ \vdots \\ 1 \cdot 4 \\ \vdots \\ \vdots \\ \vdots \end{array}$	7 · 1 4 · 0 11 · 5 	23 22 17 23 	8 7 29 64 	6 2 2 2 	<1 <1 2 11 	63 69 50 0*		

* Free lime present; assume C.E.C. is saturated.

APPENDIX IB - METHOD OF SOIL ANALYSIS

All results are expressed in terms of the oven-dry soil passing a 2 mm sieve (fine earth) except that of gravel, which is expressed as a percentage of the air-dry field sample.

Particle size analysis -The plummet balance method of Hutton (1956) was employed, with organic matter and carbonate removal where necessary. The hand decantation method of Piper (1942) was used to separate the sand from the finer fractions.

Soil reaction (pH). -A 1:5 soil-water suspension was used, with measurements being made with a "Jones" glass electrode pH meter.

Chloride (Cl-). - The electrometric silver nitrate titration technique of R. J. Best was used, as detailed in Piper (1942).

Organic carbon (Org. C). -The method used was the wet combustion technique of Walkley and Black, as in Piper (1942). No recovery factor has been applied to the results listed, but carbon/nitrogen ratios were calculated with the factor 1.3 C/N.

Total nitrogen (N). -Nitrogen was determined by the semi-micro method described by Metson (1956), in which a finely-ground sample of soil weighing 0.2 to 0.5 g is digested in concentrated sulphuric acid, and the ammonia recovered by distillation of the digest in a Markham still.

*Free iron oxide (Fe*₂ O_3). -The method of Haldane (1956) was employed, in which a ground sample of soil is extracted with an oxalic acid-ammonium oxalate buffer and powdered zinc, and the ferrous iron in the treated extract titrated with potassium dichromate.

Hydrochloric acid extract. -The extract was prepared by boiling 4 g of soil with 20 ml concentrated hydrochloric acid for four hours with refluxing, with subsequent filtration and dilution to 200 ml. Phosphorus was determined on an aliquot of this extract by a colorimetric method (molybdenum blue) with ascorbic acid as the reducing agent (Hutton et. al., priv. comm.). Absorbance measurements were made with a "Unicam" SP600 spectrophotometer at wavelength 825 mµ. Potassium was determined by flaming a portion of the extract, suitably diluted, in a "Lange" flame photometer.

Exchangeable cations. -Non-calcareous samples were treated by the proposed method of Hutton and Bond (unpublished data), in which N/1 ammonium chloride is used as the leaching agent for the individual cations, and cation exchange capacity is determined by subsequent leaching of the ammonium-ion saturated soils with N/1 sodium sulphate.

Sodium and potassium were determined by direct flaming of the ammonium chloride leachate in the "Lange" flame photometer, and calcium and magnesium by titration with E.D.T.A. with Eriochrome Black T as a visual indicator for calcium plus magnesium, and Murexide as indicator in the colorimetric titration for calcium, in an "Eel Titrator". Ammonium ion in the sodium sulphate leachate was determined by the Nessler method, and chloride ion by electrometric titration. The difference between these two gave the cation exchange capacity.

For calcareous soils the method of Tucker (1954) was used, which uses a leaching solution of normal ammonium chloride in 60 per cent ethanol of pH 8.5 to restrict the solubility of calcium and magnesium carbonates. Leachates were evaporated to dryness and re-dissolved in distilled water to remove the ethanol and excess ammonia before the individual cations were determined.

APPENDIX IIA - COMMON NAMES AND BOTANICAL NAMES OF PLANTS REFERRED TO IN THE TEXT.

Alpine ash Alpine bottlebrush Alpine everlasting Alpine Grevillea . . Alpine mint-bush Alpine Phebalium Alpine rice-flower Alpine star-bush Alpine sunray Apple box Bitter-pea Black cypress-pine Black sallee Blanket-leaf Blue gum Bogong gum Bracken fern (Austral bracken) Brittle gum Broad-leaf peppermint Brown edelweiss Candlebark gum Candle heath Common buttercup Common Cassinia Coral heath Dock Elderberry panax Forest red gum Golden guinea flower Golden Oxylobium Gorse bitter-pea Ground feirns Handsome flat-pea Hazel Pomaderris Hickory wattle Holly Lomatia Hop bitter-pea Kangaroo grass Knot weed Leafy Bossiaea Long-leaf box Long-leak Hovea (Rusty Pods) Manna gum Manuka Monterey pine Mountain beard-heath Mountain gum Mountain Orites Mountain plum-pine Musk daisy-bush Narrow-leaf peppermint Prickly bush-pea Prickly currant-bush Purple coral-pea.. Red box Red stringybark Reed River red gum Rough Coprosma

Eucalyptus delegatensis R. T. Baker Callistemon sieberi DC. Helichrysum hookeri Druce Grevillea australis R. Br. Prostanthera cuneata Benth. Phebalium podocarpiodes F. Muell. Pimelia alpina F. Muell. Pleurandropsis trymalioides F. Muell. Helipterum incanum DC. var. alpinum F. Muell. Eucalyptus bridgesiana R. T. Baker Daviesia corymbosa Srn. var. laxiflora J. H. Willis Callitris endlicheri (Parl.) F. M. Bailey Eucalyptus stellulata Sieb. ex DC. Bedfordia salicina DC. Eucalyptus bicostata M. Bl. & S. E. chapmaniana A. K. Cameron Pleridium esculentunt (Forst. f.) Nakai E. mannifera Mudie Eucalyptus dives Schau. Ewartia nubigena Beaur. E. rubida H. Deane & Maiden Richea continentis B. L. Burtt. Ranunculus lappaceus Sm. Cassinia aculeata (Labill.) R. Br. Epacris microphylla R. Br. Rumex crispus L. Tieghemopanax sambucifolius (Sieber ex DC.) R. Viguier Eucatyptus blakelyi Maiden Hibbertia sp. Oxylobium ellipticum R. Br. Daviesia ulicifolia Andr. Blechnum spp. Platylobium formosum Sm. Pomaderris apetala Labill. Acacia obliquinervia M. D. Tindale Lomatia ilicifolia R. Br. Daviesia latifolia R. Br. Themeda australis (R. Br.) Stapf. Polygonum minus Huds. Bossiaea foliosa A. Cunn. Eucalyptus goniocalyx F. Muell. ex Miq. Hovea longifolia R. Br. Eucalyptus viminalis Labill. Leptospermum scoparium R, and G. Forster Pinus radiata D. Don Leueopogon hookeri Sond. Eucalyptus dalrympleana Maiden Orites lancifolia F. Muell. Podocarpus lawrencei Hook. f. Olearia argophylla (Labill.) Benth. Eucalyptus radiata Sieb. ex DC. Pultenaea juniperina Labill. Coprosma quadrifida Robinson Hardenburgia violaceae Steam. Eucalyptus polyanthemos Schauer. E. macrorhyncha F. Muell. ex Benth. Phragmites communis Trin. Eucalyptus camaldulensis Dehn. Coprosma hirtella Labill.

Rush Scaley buttons Sedge Sedge (Tufted sedge) Shield fern Silver wattle Smart weed Snow daisy Snow grass Snow gum Sorrel Sphagnum moss Spreading rope-rush Swamp gum Swamp heath Tall rice-flowcr Thyme heath Tree violet Tussock grass Wallaby grass White box Woolly teatree Yellow box Yellow Kunzea

Juncus spp. Leptorrhynchus squamatus Less. Carex breviculmis R. Br. C. gaudichaudiana Kunth. Polystichum proliferum (R. Br.) C. Pre. Acacia dealbata Link. Polygonum hydropiper L. Celmisia longifolia Cass. Poa australis sp. agg. Eucalyptus pauciflora Sieb. ex Spreng. Rumex acetosella L. Sphagnum cristalum Hpe. Calorophus lateriflorus (R. Br.) F. Muell. Eucalyptus camphora R. T. Baker Epacris paludosa R. Br. Pimelia ligustrina Labill. *Epacris serpyllifolia* R. Br. Hymenanthera dentata R. Br. ex DC. Poa australis sp. agg. Danthonia spp. Eucalyptus albens Miq. Leptospermum lanigerum Sm. E. melliodora A. Cunn. ex Schau. Kunzea muelleri Benth.

APPENDIX IIB - VEGETATION CLASSIFICATION FOR THE KIEWA CATCHMENT

Formation	Floristic unit	Other Species often or usually present
Feldmark	Ewartia mubigena association	Helipterum incanum var alpinum;
		kunzea muelleri, Epacris microphylla
Alpine herbfied	Celmisia longifolia-Poa australis	Leptorrhynchus squamatus; Rumex
	alliance	acetosella, Ranuculus lappaceus, Carex
		breviculmus
Alpine shrub community	Epacris serpllifolia association	Kunzea muelleri
	Hovea longifolia-Oxylobium ellipticum	Leucopogon hookeri, Grevillea australia,
	alliance	Prostanthera cuneata, Bossiaea foliosa,
		Phebalium podocarpoides, Pimelia
		alpina
Alpine (Sod-tussock) grassland	Poa australis association	Members of herbfield or shrun
		communities
Bog	Sphagnum cristatum assocation	Richea continetis, Calorophus
		lateriflorus, Carex gaudichaudiana,
		Epacris paludosa, Calistemon sieberi
Fen	Carex gaudichaudiana association	
Sub-alpine woodland	<i>E. pauciflora</i> assication	Members of the alpine herbfield, shrub
		and grassland communities
Wet sclerophyll forest	E. dalrympleana-E. pauciflora assocation	Shrubs and herbs, including grasses
	E. delegatensis association	<i>E. dalrympleana</i> , occasionally near upper
		elevation limit of association. Shrubs and
		herbs
	E. radiata-E. rubida-E. dives assocation	E. viminalis, E. bicostata, E.
		chapmaniana. Shrubs and herbs
Dry sclerophyll forest	E. macrorhyncha alliance	E. polyanthemos, E. dives, E. gonicalyx,
		E. rubida, E. melliodora, E. bridgesiana,
		E. albens. Low shrubs and grasses.
Tall woodland	E. camphora-E. albens-E. bridgesiana	E. polyanthemos. Grasses
	association	
	E. camaldulensis assocation	Grasses and hygrophilous herbs

APPENDIX III - TABLE OF CONVERSION FACTORS

To convert miles	To kilometres	Multiply by	1 6094
To convert feet	To metres	Multiply by	0.3048
To convert inches	To centimetres	Multiply by	2.540
To convert square miles	To square kilometres	Multiply by	2.590
To convert acres	To hectares	Multiply by	0.4047
To convert acre feet	To cubic metres	Multiply by	1,233.5
To convert temperature ^o F	To °C	$T^{o}C = 5/9 (T^{O}F - 32)$	