10. Listing of Pedotransfer Functions of Water Retention Characteristic

Table 31.1 Water retention pedotransfer functions - Horizon A

Soil	Equation	Parameter	М	RMSR	\mathbb{R}^2	K	MD	RMSD
All duplex soils in SIR	$\begin{split} \theta\left(h\right) &= \theta_{r} \; + \frac{\left(\theta_{s} - \theta_{r}\right)}{\left[1 + \left(\alpha \; h\right)^{N}\right]^{\left(1 - 1/N\right)}} \\ \theta_{s} &= \; b_{1} \; \left(1 - BD/2.65\right) \; + \; b_{2} \\ \theta_{r} &= r_{1} \; c \; + \; r_{2} \; s \; + \; r_{3} \\ \alpha &= \; a_{1} \; + \; a_{2} \; d_{g} \\ N &= \; n_{1} \; + \; n_{2} \; \sigma_{g} \end{split}$	$\begin{array}{c} b_1 = 1.258 \\ b_2 = -0.0726 \\ r_1 = 0.00214 \\ r_2 = -0.0015 \\ r_3 = 0.1 \\ a_1 = 0.1 \\ a_2 = 0.80 \\ n_1 = 1.10 \\ n_2 = 0.0016 \end{array}$	557	.043	0.78	63	0.000	0.032
Sandmount sand (This PTF could be used for other sandy soils of Group 1S which are expected to have similar shape of water retention curve as Sandmount sand)	$\begin{split} \theta\left(h\right) &= \theta_{r} \; + \frac{\left(\theta_{s} - \theta_{r}\right)}{\left[1 + \left(\alpha \; h\right)^{N}\;\right]^{\left(1 - 1/N\right)}} \\ \theta_{s} &= s_{1} \; c + s_{2} \; BD + s_{3} \\ \theta_{r} &= r_{1} \; c + r_{2} \; s \\ \alpha &= a_{1} + a_{2} \; d_{g} \\ N &= n_{1} + n_{2} \; \sigma_{g} \end{split}$	$S_{1} = 0.00724$ $S_{2} = -0.454$ $S_{3} = 1.162$ $r_{1} = 0.002$ $r_{2} = 0.00047$ $a_{1} = -0.724$ $a_{2} = 1.66$ $n_{1} = 2.917$ $n_{2} = -0.461$	16	0.019	0.98	2	0.00	0.020

Notations (see Chapter 4 for more details):

 $\theta(h)$ is volumetric water content (cm³ cm⁻³) at suction h (cm)

 θ_r and θ_s are residual and saturated water contents, respectively, (cm³ cm⁻³)

 α is a scaling parameter (>0, in cm⁻¹) related to the inverse of the air entry suction

N (>1) is a curve shape parameter, a measure of the pore size distribution

c and s are clay and sand percentages in weight, respectively

BD is bulk density in g cm⁻³

dg is geometric mean diameter (mm)

 σ_g is geometric standard deviation

M is number of data points

RMSR is root mean squares of residuals

R² is coefficient of determination

K is number of water retention curves

MD is mean deviation

RMSD is root mean square deviation

Soil Hydraulic Properties of the SIR

Table 31.2 Water retention pedotransfer functions - Horizon B1

Point Estimation	Equation	Parameter	М	RMSR	R ²	K	MD	RMSD
All duplex soil in SIR	$\begin{split} \theta\left(h\right) &= \theta_{r} \; + \frac{\left(\theta_{s} - \theta_{r}\right)}{\left[1 + \left(\alpha \; h\right)^{N}\right]^{\left(1 - 1/N\right)}} \\ \theta_{s} &= s_{1} \; c + s_{2} \; BD \; + \; s_{3} \\ \theta_{r} &= r_{1} \; c \; + \; r_{2} \; s \; + \; r_{3} \\ \alpha &= a_{1} \; + \; a_{2} \; d_{g} \\ N &= n_{1} \; + \; n_{2} \; \sigma_{g} \end{split}$	$\begin{array}{c} s_1 = 0.00058 \\ s_2 = -0.322 \\ s_3 = 0.9575 \\ r_1 = 0.00109 \\ r_2 = -0.003 \\ r_3 = 0.230 \\ a_1 = 0.096 \\ a_2 = 1.74 \\ n_1 = 1.329 \\ n_2 = -0.0087 \end{array}$	506	0.038	0.82	58	0.00	0.028
Sandmount sand (This PTF could be used for other sandy soils of Group 1S which are expected to have similar shape of water retention curve as Sandmount sand)	$\begin{split} \theta\left(h\right) &= \theta_{r} \; + \frac{\left(\theta_{s} - \theta_{r}\right)}{\left[1 + \left(\alpha \; h\right)^{N} \;\right]^{\left(1 - 1/N\right)}} \\ \theta_{s} &= s_{1} \; c \; + s_{2} \; BD \; + \; s_{3} \\ \theta_{r} &= r_{1} \; c \; + \; r_{2} \; s \; + \; r_{3} \\ \alpha &= a_{1} \; + \; a_{2} \; d_{g} \\ N &= n_{1} \; + \; n_{2} \; \sigma_{g} \end{split}$	$\begin{array}{c} s_1 = 0.011 \\ s_2 = -0.331 \\ s_3 = 0.938 \\ r_1 = -0.130 \\ r_2 = -0.0045 \\ r_3 = 0.651 \\ a_1 = 1.691 \\ a_2 = -1.355 \\ n_1 = 4.458 \\ n_2 = -0.842 \end{array}$	16	0.014	0.99	2	0.00	0.017

Notations (see Chapter 4 for more details):

 $\theta(h)$ is volumetric water content (cm³ cm⁻³) at suction h (cm)

 θ_r and θ_s are residual and saturated water contents, respectively, (cm³ cm⁻³)

 α is a scaling parameter (>0, in $cm^{\mbox{\tiny -1}})$ related to the inverse of the air entry suction

N (>1) is a curve shape parameter, a measure of the pore size distribution

c and s are clay and sand percentages in weight, respectively

BD is bulk density in g cm⁻³

dg is geometric mean diameter (mm)

 $\sigma_{\!\scriptscriptstyle g}$ is geometric standard deviation

M is number of data points

RMSR is root mean squares of residuals

 R^2 is coefficient of determination

 \boldsymbol{K} is number of water retention curves

MD is mean deviation

RMSD is root mean square deviation