8.	Pedotransfer	r Functions o	f Soil Wate	r Retention (Characteristic

8.1 Pedotransfer Function Equation of Soil Water Retention Characteristic

The pedotransfer function equation of soil water retention characteristic is expressed as:

$$\theta(h) = r_1 c + r_2 s + r_3 + \frac{\left(s_1 (1 - BD/2.65) + s_2 - r_1 c - r_2 s - r_3\right)}{\left[1 + \left(\left(a_1 + a_2 d_g\right) h\right)^{\left(n_1 + n_2 \sigma_g\right)}\right]^{\left(1 - 1/\left(n_1 + n_2 \sigma_g\right)\right)}}$$
(1)

where $\theta(h)$ is volumetric water content (cm³ cm³) at the suction h (cm), BD is bulk density in g/cm³, c is clay percentage, s is sand percentage, dg is geometric mean diameter in mm, σ_g is geometric standard deviation in mm, and s₁, s₂, r₁, r₂, r₃, a₁, a₂, n₁ and n₂ are empirical parameters.

Geometric mean particle-size diameter (d_g in mm) and geometric standard deviation (σ_g in mm) can be calculated from main grain size fractions (m_1 , m_2 , m_3 are clay, slit and sand mass fractions respectively) as

$$d_g = \exp \sum_{i=1}^3 m_i \ln d_i$$
 (2)

$$\sigma_{g} = \exp\left[\sum_{i=1}^{3} m_{i} (\ln d_{i})^{2} - \left(\sum_{i=1}^{3} m_{i} (\ln d_{i})\right)^{2}\right]^{0.5}$$
(3)

where m_i is the mass fraction and d_i is the mean particle size diameter of the ith mass fraction class.

The parameters of pedo-transfer functions of soil water retention characteristics for Horizons A and B1 are presented in Tables 31.1 and 31.2.

Table 31.1 Soil Water Retention PTFs of Horizon A

Soil	Equation	Parameter	n	RMSR	R^2	MD	RMSD
All duplex soils in SIR	$\theta(h) = \theta_{r} + \frac{(\theta_{s} - \theta_{s})}{(1 + (\alpha h)^{N})^{(1-1/N)}}$ $\theta_{s} = s_{1} (1-BD/2.65) + s_{2}$ $\theta_{r} = r_{1} c + r_{2} s + r_{3}$ $\alpha = a_{1} + a_{2} d_{g}$ $N = n_{1} + n_{2} \sigma_{g}$	$\begin{array}{c} s_1 = 1.199 \\ s_2 = -0.0394 \\ r_1 = 0.0029 \\ r_2 = -0.0045 \\ r_3 = 0.03 \\ a_1 = 0.1 \\ a_2 = 0.80 \\ n_1 = 1.10 \\ n_2 = -0.003 \end{array}$	557	.043	0.78	0.000	0.032
Sandmount sand*	$\theta_{s} = s_{1} c + s_{2} BD + s_{3}$ $\theta_{r} = r_{1} c + r_{2} s$ $\alpha = a_{1} + a_{2} d_{g}$ $N = n_{1} + n_{2} \sigma_{g}$	$\begin{array}{c} s_1 = 0.00724 \\ s_2 = -0.454 \\ s_3 = 1.162 \\ r_1 = 0.002 \\ r_2 = 0.00047 \\ a_1 = -0.724 \\ a_2 = 1.66 \\ n_1 = 2.917 \\ n_2 = -0.461 \end{array}$	16	0.019	0.98	0.00	0.020

Note: *Sandmount sand soil is not duplex soil and the shape of water retention curve is different from other soils, therefore it was considered separately.

Table 31.2 Soil Water Retention PTFs of Horizon B1

Point Estimation	Equation	Parameter	n	RMSR	R ²	MD	RMSD
All duplex soil in SIR	$\theta(h) = \theta_{r} + \frac{(\theta_{s} - \theta_{s})}{(1 + (\alpha h)^{N})^{(1-1/N)}}$ $\theta_{s} = s_{1} c + s_{2} BD + s_{3}$ $\theta_{r} = r_{1} c + r_{2} s + r_{3}$ $\alpha = a_{1} + a_{2} d_{g}$ $N = n_{1} + n_{2} \sigma_{g}$	$\begin{array}{c} s_1 = 0.00058 \\ s_2 = -0.322 \\ s_3 = 0.9575 \\ r_1 = 0.00109 \\ r_2 = -0.003 \\ r_3 = 0.230 \\ a_1 = 0.096 \\ a_2 = 1.74 \\ n_1 = 1.329 \\ n_2 = -0.0087 \end{array}$	506	0.038	0.82	0.00	0.028
Sandmount sand*	$\theta(h) = \theta_{r} + \frac{(\theta_{s} - \theta_{s})}{(1 + (\alpha h)^{N})^{(1-1/N)}}$ $\theta_{s} = s_{1} c + s_{2} BD + s_{3}$ $\theta_{r} = r_{1} c + r_{2} s + r_{3}$ $\alpha = a_{1} + a_{2} d_{g}$ $N = n_{1} + n_{2} \sigma_{g}$	$\begin{array}{c} s_1 \! = \! 0.011 \\ s_2 \! = \! -0.331 \\ s_3 \! = \! 0.938 \\ r_1 \! = \! -0.130 \\ r_2 \! = \! -0.0045 \\ r_3 \! = \! 0.651 \\ a_1 \! = \! 1.691 \\ a_2 \! = \! -1.355 \\ n_1 \! = \! 4.458 \\ n_2 \! = \! -0.842 \\ \end{array}$	16	0.014	0.99	0.003	0.017

Note: * Sandmount sand soil is not duplex soil and the shape of water retention curve is different from other soils, therefore it was considered separately.